CLASS III/IV WATER OPERATOR COURSE MANUAL

Overview/Preface

This manual is designed for operators taking the Class III/IV water operator certification course and exam. This tool, along with your operating experience and review of the Office of Water Programs California State University Sacramento manuals, will help you prepare for the certification exam. Prior review of this manual does not eliminate the need for prospective operators to attend the required Class II training course.

Originally, this manual was written as a “need to know” study guide for individuals taking the water operator certification exam. However, it was decided this manual should be a stand alone resource to assist operators in their overall understanding of the treatment process at any Class II system, large or small. With the great diversity and dynamics present in the water treatment industry, it is important for operators to be resourceful – at least know enough to ask the right questions to the right people.

Information contained within this manual should give you a basic understanding of any water system you may work with. Operators should use this manual as a catalyst or springboard for further research and inquiry into your individual system(s). We encourage your continued educational growth.

Disclaimer

All reasonable precautions have been taken in the preparation of this document, including both technical and non-technical proofing. The West Virginia Department of Health and Human Resources and West Virginia Rural Water Association and all staff assume no responsibility for any errors or omissions.

Should the summarized information in this document be inconsistent with a governing rule or statute, the language of the rule or statute shall prevail.

Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the West Virginia Department of Health and Human Resources and West Virginia Rural Water Association.
TABLE OF CONTENTS

I. Introduction

II. Content

A. DRINKING WATER REGULATIONS

1. West Virginia Drinking Water Regulations
2. Safe Drinking Water Act
3. Public Notification
4. Boil Water Notice
5. Total Coliform Rule
6. Surface Water Treatment Rule
7. Interim Enhanced Surface Water Treatment Rule
8. Long Term 1 Enhanced Surface Water Treatment Rule
9. Long Term 2 Enhanced Surface Water Treatment Rule
10. Stage 1 Disinfectants & Disinfection Byproducts Rule
11. Stage 2 Disinfectants & Disinfection Byproducts Rule
12. Lead and Copper Rule
13. Filter Backwash Recycling Rule
14. The Phase I, II, IIb, and V Rules
15. Arsenic Rule
16. Groundwater Rule
17. Radionuclide Rule

B. OPERATOR CERTIFICATION

1. Public Water Systems Operator Regulations
2. Chief Operator Requirements & Responsibilities
3. New Renewal and Certification Requirements
4. Dropping the “F”
5. Water Distribution Certification
6. Public Water System Owner Requirements
7. Forms
8. Compliance and Enforcement Methods
9. Public Water System Classification
10. Operator Certification Checklist
11. Guidance for Certified Water Operators
12. Waivers and Variances

C. PUBLIC WATER SYSTEMS IN WEST VIRGINIA

D. MULTIPLE-BARRIER APPROACH

E. SOURCE WATER ASSESSMENT & PROTECTION

F. SANITARY SURVEY

G. APPLIED MICROBIOLOGY – REVIEW & TAKE OUT BASIC INFO.

H. APPLIED CHEMISTRY

1. Common Names & Symbols for Water Treatment Chemicals

I. WATER TREATMENT

1. Pretreatment
2. Sequestering
3. Coagulation & Flocculation
 a. Enhanced Coagulation Requirements
4. Sedimentation
5. Filtration
 a. Individual Filter Self Assessment
 b. Turbidity Monitoring
6. Disinfection
 a. Chlorine Points of Application
 b. Full-Time Chlorination
 c. Chlorine Monitoring
 d. CT
 e. Log Inactivation Methods

Page

6
9
45
46
48
49
50
51
52
53
54
56
58
60
43
61
63
f. Disinfection Byproducts

g. Chlorine Safety

7. Corrosion Control
 a. Langelier Saturation Index

8. Fluoridation
 a. Fluoridation Feed Systems
 b. Fluoride System Troubleshooting
 c. Emergency Procedures for Fluoride Overfeed

J. AREA WIDE OPTIMIZATION PROGRAM (AWOP)

K. PREPARATION OF AN OPERATION AND MAINTENANCE PLAN
 1. O&M Plan for Treatment Plant
 2. O&M Plan for Distribution Plant

L. CROSS-CONNECTIONS AND BACKFLOW

M. INSTRUMENTATION & SCADA

N. SAMPLING
 1. Basic Sampling Procedures
 2. Times
 3. Typical Chemical Analysis Laboratory Report
 4. Record Keeping For Compliance Sampling

O. EFFECTIVE WATER UTILITY MANAGEMENT
 1. The Need For Organizational Structure
 2. Management Components
 3. Formal Communication
 4. Compliance Monitoring
 5. Monthly Operational Reports
 6. Minimizing Reporting Violations
 7. Safe Drinking Water Information System
 8. Record Keeping
 a. Maintaining Records & Reports
 b. Coliform Sampling Plans
 c. Unaccounted-For Water
 d. Customer Complaints
 e. Common Inquires
 9. Standard Operating Procedures
 10. Job Descriptions
 11. Safety Program
 12. Maintenance Program
 13. Water Security & Threat Awareness

P. APPLIED MATH

III. Additional Information

A. GLOSSARY
B. ACRONYM LIST

C. CONTACTS
 1. Office of Environmental Health Services
 2. Office of Laboratory Services
 3. WV Department of Environmental Protection
 4. WV Department of Transportation
 5. WV Environmental Training Center
 6. WV Public Service Commission
 7. WV Rural Water Association
 8. Miss Utility of West Virginia

D. FORMS

E. REGULATIONS
 1. 64CSR3 Public Water Systems
 2. 64CSR4 Public Water Systems Operator Regulations
 3. 64CSR15 Cross-Connection Control and Backflow Prevention
 4. 64CSR25 Certification of Backflow Prevention Assembly Testers
 5. 64CSR77 Public Water Systems Design Standards
6. 150CSR7 Rules For The Government Of Water Utilities
INTRODUCTION

The U.S. Environmental Protection Agency (EPA or sometimes USEPA) is a federal agency charged with protecting human health and with safeguarding the natural environment: air, water, and land. On July 9, 1970, Richard Nixon transmitted Reorganization Plan No. 3 to the U.S. Congress by executive order, creating the EPA as a single, independent agency from a number of smaller arms of different federal agencies. Prior to the establishment of the EPA, the federal government was not structured to make a coordinated attack on the pollutants which harm human health and degrade the environment. The EPA was assigned the task of repairing the damage already done to the natural environment and to establish new criteria to guide Americans in making a cleaner, safer America.

The agency conducts environmental assessment, research, and education. It has the primary responsibility for setting and enforcing national standards under a variety of environmental laws, in consultation with state, tribal, and local governments. It delegates some permitting, monitoring, and enforcement responsibility to U.S. states and Native American tribes. EPA enforcement powers include fines, sanctions, and other measures.

EPA headquarters in Washington, D.C. EPA comprises 17,000 people in headquarters program offices, 10 regional offices, and 27 laboratories across the country. More than half of its staff are engineers, scientists, and environmental protection specialists; other groups include legal, public affairs, financial, and computer specialists.

Each EPA regional office is responsible within its states for implementing the Agency's programs, except those programs that have been specifically delegated to states.

- **Region 1** - responsible within the states of Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont.
- **Region 2** - responsible within the states of New Jersey and New York in addition it's also responsible for the US territories of Puerto Rico, and the U.S. Virgin Islands.
- **Region 3** - responsible within the states of Delaware, Maryland, Pennsylvania, Virginia, West Virginia, and the District of Columbia.
- **Region 4** - responsible within the states of Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, and Tennessee.
- **Region 5** - responsible within the states of Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin.
- **Region 6** - responsible within the states of Arkansas, Louisiana, New Mexico, Oklahoma, and Texas.
- **Region 7** - responsible within the states of Iowa, Kansas, Missouri, and Nebraska.
- **Region 8** - responsible within the states of Colorado, Montana, North Dakota, South Dakota, Utah, and Wyoming.
- **Region 9** - responsible within the states of Arizona, California, Hawaii, Nevada, and the territories of Guam and American Samoa.

Office of Groundwater and Drinking Water
The Environmental Protection Agency's Office of Groundwater and Drinking Water (OGWDW), together with states, tribes, and its many partners, protects public health by ensuring safe drinking water and protecting groundwater. OGWDW, along with EPA's ten regional drinking water programs, oversees implementation of the Safe Drinking Water Act (SDWA), which is the national law safeguarding tap water in America. The SDWA requires public water systems (PWSs) to provide drinking water that meets safety standards and protects sources of drinking water, including rivers, lakes, reservoirs, springs, or groundwater wells. Approximately 90% of Americans rely on public water systems for their drinking water at home; the other 10% have private wells, which are not federally regulated. Almost everyone drinks water from a public system at some point: while at school, at work, in a restaurant, or on vacation.

OGWDW develops and helps implement national drinking water standards; oversees, assists and helps fund state drinking water programs and source water protection programs; helps small drinking water systems; protects underground sources of drinking water through the Underground Injection Control Program; and provides information to the public. OGWDW also works in cooperation with states, tribes, and EPA's Office of Enforcement and Compliance Assurance to guarantee that water systems meet these protective standards.

Setting National Drinking Water Standards
OGWDW sets national standards for drinking water, which either limit the amount of a particular contaminant in drinking water or require a certain treatment to remove or inactivate a contaminant. Both types of standards protect public health. When setting these standards, OGWDW uses sound data and peer-reviewed science to focus on the contaminants which present the greatest public health risk and which appear most frequently in drinking water. OGWDW also identifies sub-populations most vulnerable to drinking water contaminants, such as infants, children, pregnant women, the elderly, and the immunocompromised, and considers the risk to these sensitive sub-populations when setting safety standards. As part of the standard-setting process, OGWDW relies on input from all interested parties, looks at whether drinking water regulations are cost effective, determines appropriate procedures for analyzing samples of drinking water, and identifies affordable ways to treat drinking water.

Working with States and Tribes to Implement the Drinking Water Program
States and tribes work directly with water systems to implement the national drinking water program. To implement the drinking water program, each state or tribe must establish a drinking water program that is at least as stringent as the federal program (some states have stricter programs), assure that water systems meet safety standards, and adopt and implement adequate enforcement procedures (called primacy). If a state or tribe is unable to meet the requirements for primacy, or is simply unwilling, EPA's regional offices will directly implement the drinking water program in that jurisdiction. OGWDW provides grants, training, and technical assistance to help states and tribes successfully carry out the provisions of the SDWA. OGWDW also administers the drinking water state revolving loan fund, and grants funds to states, that loan money to water systems to install or upgrade facilities and to replace aging pipes and other infrastructure. The fund's policy is to support all water systems in need, including assisting small and disadvantaged communities, and protecting sources of drinking water from contamination.

Assistance for Small Drinking Water Systems
The vast majority of water systems in the U.S. serve fewer than 3,300 people. Small water systems incur greater costs per household because they must spread the cost of infrastructure
improvement over a smaller customer base. In fact, small systems could incur three times as much cost per household to continue to provide safe drinking water in the future as compared to that of larger systems. OGWDW assists small systems by identifying affordable and effective ways for small systems to treat water for their customers and providing technical and financial assistance.

Voluntary Programs with Water Systems: The Partnership for Safe Water

The Partnership for Safe Water is a unique cooperative effort between OGWDW and over 100 large water systems that join the partnership to provide protection beyond what is currently required by federal law to their customers from Cryptosporidium, Giardia lambia (herein referred to as Giardia) and other microbial contaminants.

Protecting Drinking Water at its Source and Protecting Groundwater

OGWDW is working with states so that they can determine how susceptible drinking water sources are to contamination. States and water suppliers will share this information (compiled into source water assessments) with the public so that communities can protect their drinking water sources. OGWDW also oversees programs that protect aquifers which serve as the primary source of drinking water for one or more communities (sole source aquifers), and works with states to implement wellhead protection programs, under which states protect the land around wells from contaminants. Through the Underground Injection Control program, OGWDW protects underground sources of drinking water. Injection deep into the earth is a common way of disposing of hazardous waste. If not injected properly, these wastes can contaminate sources of drinking water. OGWDW sets standards for safe injection practices, and bans certain types of injection altogether. A number of other EPA programs also protect drinking water from potential sources of contamination. For instance, the Superfund program cleans-up hazardous waste sites, while other programs regulate landfills, discharges to water, underground storage tanks, and chemicals used on farms and lawns. OGWDW works with other EPA offices to support efforts to coordinate these and many other programs to provide comprehensive protection of the nation's groundwater resource.

Collecting and Providing Information to the Public

Public information and public involvement are critically important to the successful implementation of the drinking water program. OGWDW works through an advisory committee, the National Drinking Water Advisory Council, and solicits other input through public meetings with states, tribes, water systems, environmental and other groups, and the public. OGWDW is working with these partners and others to provide information to citizens and communities on the quality of their local drinking water. OGWDW collects information on every public water system, such as how many people each system serves and whether each is meeting drinking water standards. This information is stored in the Safe Drinking Water Information System, and is used to help OGWDW understand whether systems are complying with drinking water safety standards. OGWDW is also collecting information on the occurrence of contaminants which may need to be regulated in the future, and storing this information in the National Contaminant Occurrence Database. OGWDW is providing materials to help water systems prepare annual water quality reports (consumer confidence reports) and notify consumers of water emergencies, and is helping consumers use this information to make decisions.

OGWDW maintains a web site (http://www.epa.gov/safewater/) and the Safe Drinking Water Hotline (1-800-426-4791) to make drinking water information easily available, and has also recently established the Drinking Water Academy to provide further training.
Prior to 1976, water quality was regulated by individual state standards. In many cases, these standards were only recommendations rather than enforceable regulations. In December 1974, the Federal Safe Drinking Water Act (SDWA) (P.L. 93-523) was passed by Congress. The SDWA was amended in 1986 and 1996. The SDWA establishes a Federal program to monitor and increase the safety of the nation’s drinking water supply. The SDWA authorizes the EPA to set and implement health-based standards to protect against both naturally occurring and man-made contaminants in drinking water. The EPA is also responsible for assessing and protecting drinking water sources; protecting wells and collection systems; making sure water is treated by qualified operators; ensuring the integrity of distribution systems; and making information available to the public on the quality of their drinking water. The EPA works closely with each state to establish public drinking water standards and enforce the requirements of the SDWA. In West Virginia, the state government agency with primacy authority is the WV Department of Health and Human Resources (WVDHHR), Bureau for Public Health (BPH), Office of Environmental Health Services (OEHS). Therefore, OEHS has the same primary drinking water regulation enforcement authority over public water systems within the state as EPA. Local governments should be aware that while secondary drinking water standards are not federally enforceable, individual states may adopt any of the secondary standards as part of their own regulations, thus making them enforceable at the state level.

Implementing the SDWA
The EPA establishes and implements the SDWA and its amendments through Title 40 Code of Federal Regulations (CFR) Parts 141-142, “National Primary Drinking Water Regulations (NPDWR)” and Title 40 CFR Part 143 “National Secondary Drinking Water Regulations (NSDWR).” These regulations allow the EPA to enforce federally established drinking water standards by setting goals to ensure the highest quality of drinking water, from the source to the tap.

The EPA establishes health goals based on risk and sets a legal limit, or maximum contaminant level (MCL), to help ensure consistent quality of the water supply. MCLs are established based on known or anticipated adverse health effects, the ability of available technology to remove contaminants, their effectiveness, and the cost of treatment. The limit is based on lifetime exposure and represents the highest permissible level of a contaminant in water that is delivered to any user of a public water system. MCLs have been set for over 90 potential drinking water contaminants, seven of which are new standards enforceable as of January 1, 2002. The NPDWR also codifies other specific requirements of the SDWA, including monitoring and analytical requirements, reporting and record keeping, maximum contaminant level goals (MCLG), filtration and disinfection, control of lead and copper, treatment techniques, and information collection requirements for public water systems. This regulation also provides best available treatment technologies (BAT).

Secondary drinking water standards under the NSDWR are established for contaminants that primarily affect aesthetic qualities relating to public acceptance of drinking water. These secondary standards are not federally enforceable, but rather serve as guidelines for state use.

EPA's Next Steps
The EPA has drinking water regulations for more than 90 contaminants. The SDWA includes a process the EPA must follow to identify new contaminants which may require regulation in the
future. The EPA must periodically release a **Contaminant Candidate List (CCL)**. The EPA uses this list of unregulated contaminants to prioritize research and data collection efforts to help determine whether specific contaminants should be regulated.

In February 2005, the EPA published the second CCL of 51 contaminants and provided an update on the efforts to improve the CCL process for the future that is based, in part, on recommendations from the National Research Council and the National Drinking Water Advisory Council. In addition to making the process used for selecting contaminants easier to understand, the EPA goals for the future are to:

- evaluate a wider range of information
- screen contaminants more systematically, and
- develop a more comprehensive CCL by expanding the number of contaminants being reviewed for inclusion on the next CCL.
WEST VIRGINIA DRINKING WATER REGULATIONS

West Virginia has received approval from EPA to have primacy authority for enforcing public drinking water regulations at the state level. In other words, OEHS ensures all federal and state drinking water requirements are met. These state regulations can be accessed online at the West Virginia Legislature web site at www.legis.state.wv.us/. The OEHS Environmental Engineering Division (EED) Director, Walter Ivey, oversees several programs that make up the WV drinking water program. The following programs function as the multiple barrier approach in West Virginia:

- The **Source Water Assessment & Wellhead Protection (SWAP)** Program’s mission is to assess, preserve, and protect the state's source waters which are used to supply water for the state's PWSs.
- The **Certification & Training (C&T)** Program provides training and/or testing to PWS operators, wastewater treatment works operators, backflow prevention assembly installers/testers, water well drillers, and monitoring well drillers to administer certifications.
- The **Infrastructure & Capacity Development (I&CD)** Program helps drinking water systems improve their finances, management, infrastructure, and operations so they can provide safe drinking water consistently, reliably, and cost-effectively.
- The **Compliance & Enforcement (C&E)** Program determines whether a PWS is in compliance with all state rules and federal regulations pertaining to the SDWA. Such determination is based on results of the chemical/contaminant monitoring required for each PWS. If a system is out of compliance, a violation is then issued requiring the PWS to do public notification activities to inform the public that there was a problem, what happened, and what they are doing to fix it.
- Data Management enters all data received from the **Monthly Operational Reports (MORs)**, bacteriological reports, and chemical reports into a specialized database called **Safe Drinking Water Information System (SDWIS)**. Each PWS monitors and samples their water for various chemicals and contaminants that have the potential to be a public health risk.

All of the WV drinking water program is based in the OEHS central office located at 1 Davis Square, Suite 200 in Charleston, WV 25301. The OEHS central office phone number is (304) 558-2981 and fax number is (304) 558-0139. The OEHS website is http://www.wvdhhr.org/oehs/eed OEHS also has 5 district offices to provide technical and administrative support locally to PWSs across the state:

- **Wheeling District Office** (304) 238-1145
- **Philippi District Office** (304) 457-2296
- **Kearneysville District Office** (304) 725-0348
- **Beckley District Office** (304) 256-6666
- **St. Albans District Office** (304) 722-0611

The OEHS not only enforces drinking water standards, such as those in the SDWA, but it is also responsible for establishing and enforcing standards and regulations for water system design, construction, operation and maintenance, well construction and placement, pumps, treatment processes, chemical addition, well abandonment, lab certification, and wellhead protection. To ensure water systems meet these state requirements, water system owners are responsible for obtaining plan approvals from the OEHS for well construction, pump installation, well
rehabilitation, chemical addition to water, water treatment, and new system capacity. Plan approvals help ensure that water suppliers provide a safe and dependable supply of water to their customers.

OEHS personnel enforce compliance with all appropriate codes and regulations by performing periodic on-site inspections of each system. These inspections are called sanitary surveys and their frequency depends upon the size and classification of the water system. During the sanitary survey, the OEHS representative will review the system’s compliance and monitoring records and inspect the water system facilities. Following the inspection, the system owner will receive a written report listing any deficiencies or violations found. A PWS must respond within 45 days and establish time frames to correct the problem(s).
SAFE DRINKING WATER ACT

The SDWA sets permissible levels of substances found in water which could be hazardous to public health. These regulations include MCLs for inorganic and organic chemicals, radioactivity, turbidity and microbiological levels. Testing and monitoring requirements, reporting and record keeping schedules, and public notification are enforced by OEHS.

The SDWA gives the EPA the authority to set drinking water standards. Drinking water standards are regulations the EPA sets to control the level of contaminants in the nation’s drinking water. There are two categories of water standards: the Primary Drinking Water Regulations and the Secondary Drinking Water Regulations.

A National Primary Drinking Water Regulation (NPDWR) is a legally-enforceable standard that applies to public water systems. Primary standards protect drinking water quality by limiting the levels of specific contaminants that can adversely affect public health and are known or anticipated to occur in water. They take the form of MCLs or Treatment Techniques (TT’s).

A National Secondary Drinking Water Regulation (NSDWR) is a non-enforceable guideline regarding contaminants that may cause cosmetic effects (such as skin or tooth discoloration) or aesthetic effects (such as taste and odor) in drinking water. EPA recommends secondary standards to water systems but does not require systems to comply.

Maximum Contaminant Level (MCL) and Maximum Contaminant Level Goal (MCLG)

A MCL is the highest level of a contaminant that is allowed in drinking water. Before setting a MCL for any health related drinking water contaminant, the SDWA requires EPA to set what are called MCLGs. The MCLG is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin or safety. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. Realizing that, in some cases, it is not technologically or financially feasible to achieve the MCLG for all contaminants, EPA establishes MCLs for all regulated contaminants in drinking water. In doing so, they take into account such factors as health risk assessments, cost-benefit analysis, and BATs, in establishing acceptable levels. BAT refers to the technology currently available to detect and treat the contaminant of concern. MCLs are the “drinking water standards” that all public water systems must meet. It is important to remember that MCLs are not set in stone. As new health effects data becomes available, MCLs are adjusted either up or down, depending on what the latest data shows.

Treatment Technique (TT) Requirement

For some contaminants, establishing a specific MCL is either not possible or too costly to mandate. For such contaminants, EPA may also choose to require a specific water treatment process intended to reduce the level of a contaminant in drinking water, called a Treatment Technique (TT), which, when implemented by the water system, would reasonably protect public health. Examples of TTs are corrosion control for reduction of lead and copper, and filtration for removal of particulates in surface water.

Record Keeping Requirements

Public water systems must retain copies of their records for certain lengths of time depending on the type of record. Monitoring records must contain certain information and must remain on the premises or at a convenient location near the premises.
The following is a general listing of the types of records and the length of time they must be kept:

<table>
<thead>
<tr>
<th>Time Line</th>
<th>Records</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 years</td>
<td>Copies of Backflow Testing Results</td>
</tr>
<tr>
<td>3 years</td>
<td>Records of action to correct violation</td>
</tr>
<tr>
<td>3 years</td>
<td>Copies of Public Notices</td>
</tr>
<tr>
<td>5 years</td>
<td>Monthly Operational Reports</td>
</tr>
<tr>
<td>5 years</td>
<td>Bacteria Analysis</td>
</tr>
<tr>
<td>5 years</td>
<td>Records concerning a variance or exemption</td>
</tr>
<tr>
<td>10 years</td>
<td>Copies of written reports, summaries, or communications relating to sanitary surveys</td>
</tr>
<tr>
<td>10 years</td>
<td>Radiological, chemical and turbidity analysis</td>
</tr>
<tr>
<td>12 years</td>
<td>Lead and copper results and reports</td>
</tr>
<tr>
<td>Indefinitely</td>
<td>CT Benchmarking and Profiling results</td>
</tr>
</tbody>
</table>
SAFE DRINKING WATER RULES AND REGULATIONS

<table>
<thead>
<tr>
<th>SDWA Rule</th>
<th>Risk Type</th>
<th>Coverage</th>
<th>Overview</th>
<th>Monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Coliform Rule</td>
<td>Microbial</td>
<td>All PWS</td>
<td>Monitoring for coliform as indicator of potential contamination.</td>
<td>Sampling based on population; requires confirmation for positive coliform.</td>
</tr>
</tbody>
</table>
| Surface Water Treatment Rule | Microbial | All PWS that use SW or GWUDI* | Establishes criteria when filtration is required. Systems must filter and disinfect or apply for reduced monitoring. | 1. Inactivation Ratios
2. Residual Disinfectant Concentration (RDC)
3. Turbidity |
| Phase I, II, V Rule | Chemical and Radiological | CWS and NTNCWS | Establishes MCLs or treatment for 66 chemicals (IOC, VOC and SOC) | Nine Year compliance cycle with 3 year compliance period |
| Nitrate and Nitrite only | Chemical and Radiological | All PSW | Establishes MCLs or treatment | Once per year |
| Lead and Copper Rule | Chemical and Radiological | CWS and NTNCWS | Establishes treatment techniques for corrosion control, source water, and lead service line replacement and public education triggered by levels at consumer taps. | Consumer taps during each 6-month period. Two consecutive periods triggers corrosion control, or reduced monitoring. |
| Stage 1 Disinfection Byproducts Rule | Chemical and Radiological | CWS and NTNCWS | Reduce levels of disinfectants and DBPs. Sets MCLs for HAA5s, chlorite, bromate, and TTHMs and MRDL and MRDLG** | 1. Monitoring for DBP.
2. For surface water and GWUDI, TOC and alkalinity. |
| Filter Backwash Recycling Rule (FBRR) | Microbial | PWS or GWUDI that use conventional or direct filtration | Requires systems to return backwash for filtration. | Complete upgrades by 6/8/06 |
| Consumer Confidence Reports | | All CWS | CCR to customers about the quality and health implications of community water supply. | Monitoring and results and violations must be reported. |
| Public Notification | | All PWS | Divides Notification to Public for violations into 3 tiers:
Tier 1-Serious Health Effect-within 12 hours
Tier 2-Health Potential-within 30 days
Tier 3-Not immediate health impact-one year | Tier monitoring results must be reported to public in timely manner. |
<p>| Arsenic and New Source Contaminants | Chemical and Radiological | CWS and NTNCWS | Sets MCL and monitoring requirements for arsenic at 0.010 mg/L | Places arsenic monitoring with other IOCs*** |
| Radionuclides Rule | Chemical and Radiological | CWS | MCL for monitoring at each entry point and reporting, sets public notification requirements | Places monitoring for gross alpha and Radium 226 and 228 and Uranium in standard framework. Also beta if affected. |</p>
<table>
<thead>
<tr>
<th>SDWA Rule</th>
<th>Risk Type</th>
<th>Coverage</th>
<th>Overview</th>
<th>Monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interim Enhanced Surface Water Treatment Rule</td>
<td>Microbial</td>
<td>PWS and GWUDI that serves more than 10,000 persons</td>
<td>Sets requirements for microbial contamination including 2 log reduction of Cryptosporidium and prevents risk associated with DBP requirements</td>
<td>Combined filter effluent every 4 hours; Continuous turbidity monitoring on each filter every 15 minutes; NTU ≤0.3 95% of time, Maximum level of 1 NTU Disinfection Profiling each week</td>
</tr>
<tr>
<td>Long Term 1 Enhanced Surface Water Treatment Rule</td>
<td>Microbial</td>
<td>PWS and GWUDI that serves less than 10,000 persons</td>
<td>Sets requirements for microbial contamination including 2 log reduction of Cryptosporidium and prevents risk associated with DBP requirements</td>
<td>Combined filter effluent every 4 hours; Continuous turbidity monitoring on each filter every 15 minutes; NTU ≤0.3 95% of time, Maximum level of 1 NTU Disinfection Profiling each week</td>
</tr>
<tr>
<td>Groundwater Rule</td>
<td>Microbial</td>
<td>PWS that use GW</td>
<td>Sets requirements for viruses and bacteria</td>
<td>Sets inactivation levels for viruses (4-log)</td>
</tr>
<tr>
<td>Radon Rule</td>
<td>Chemical and Radiological</td>
<td>CWS that use GW, mixed GW or intermittently use GW</td>
<td>Regulates exposure to radon</td>
<td>Results trigger additional or reduced monitoring</td>
</tr>
<tr>
<td>Stage 2 Disinfection Byproduct (DBP) Rule</td>
<td>Microbial</td>
<td>CWS and NTNCWS that do not use UV</td>
<td>Works in combination with Long Term Enhanced Surface Water Treatment Rule</td>
<td>Initial Distribution System Evaluation to determine monitoring sites</td>
</tr>
<tr>
<td>Long Term 2 Enhanced Surface Water Treatment Rule</td>
<td>Microbial</td>
<td>PWS that use surface water and GWUDI</td>
<td>Regulates treatment for source water</td>
<td>For systems serving under 10,000; Cryptosporidium and E. coli monitoring</td>
</tr>
</tbody>
</table>
WHAT ARE SECONDARY STANDARDS?

The EPA has established National Primary Drinking Water Regulations that set mandatory water quality standards for drinking water contaminants. These are enforceable standards called "maximum contaminant levels" or "MCLs", which are established to protect the public against consumption of drinking water contaminants that present a risk to human health. An MCL is the maximum allowable amount of a contaminant in drinking water which is delivered to the consumer.

In addition, EPA has established National Secondary Drinking Water Regulations that set non-mandatory water quality standards for 15 contaminants. EPA does not enforce these "secondary maximum contaminant levels" or "SMCLs." They are established only as guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color and odor. These contaminants are not considered to present a risk to human health at the SMCL.

Since these contaminants are not health threatening at the SMCL, and public water systems only need test for them on a voluntary basis, then why it is necessary to set secondary standards? EPA believes that if these contaminants are present in your water at levels above these standards, the contaminants may cause the water to appear cloudy or colored, or to taste or smell bad. This may cause a great number of people to stop using water from their public water system even though the water is actually safe to drink. Secondary standards are set to give public water systems some guidance on removing these chemicals to levels that are below what most people will find to be noticeable.

There are a wide variety of problems related to secondary contaminants. These problems can be grouped into three categories: Aesthetic effects -- undesirable tastes or odors; Cosmetic effects -- effects which do not damage the body but are still undesirable; and Technical effects -- damage to water equipment or reduced effectiveness of treatment for other contaminants. The secondary MCLs related to each of these effects are given in Table 1.

Aesthetic Effects

Odor and Taste are useful indicators of water quality even though odor-free water is not necessarily safe to drink. Odor is also an indicator of the effectiveness of different kinds of treatment. However, present methods of measuring taste and odor are still fairly subjective and the task of identifying an unacceptable level for each chemical in different waters requires more study. Also, some contaminant odors are noticeable even when present in extremely small amounts. It is usually very expensive and often impossible to identify, much less remove, the odor-producing substance.

- Standards related to odor and taste: Chloride, Copper, Foaming Agents, Iron, Manganese pH, Sulfate, Threshold Odor Number (TON), Total Dissolved Solids, Zinc.

Color may be indicative of dissolved organic material, inadequate treatment, high disinfectant demand and the potential for the production of excess amounts of disinfectant by-products. Inorganic contaminants such as metals are also common causes of color. In general, the point of consumer complaint is variable over a range from 5 to 30 color units, though most people find color objectionable over 15 color units. Rapid changes in color levels may provoke more citizen complaints than a relatively high, constant color level.
- Standards related to color: Aluminum, Color, Copper, Foaming Agents, Iron, Manganese, Total Dissolved Solids.

Foaming is usually caused by detergents and similar substances when water has been agitated or aerated as in many faucets. An off-taste described as oily, fishy, or perfume-like is commonly associated with foaming. However, these tastes and odors may be due to the breakdown of waste products rather than the detergents themselves.

- Standards related to foaming: Foaming Agents.

Cosmetic Effects
Skin discoloration is a cosmetic effect related to silver ingestion. This effect, called argyria, does not impair body function, and has never been found to be caused by drinking water in the United States. A standard has been set, however, because silver is used as an antibacterial agent in many home water treatment devices, and so presents a potential problem which deserves attention.

- Standard related to this effect: Silver.

Tooth discoloration and/or pitting is caused by excess fluoride exposures during the formative period prior to eruption of the teeth in children. The secondary standard of 2.0 mg/L is intended as a guideline for an upper boundary level in areas which have high levels of naturally occurring fluoride. It is not intended as a substitute for the lower concentrations (0.7 to 1.2 mg/L) which have been recommended for systems which add fluoride to their water. The level of the SMCL was set based upon a balancing of the beneficial effects of protection from tooth decay and the undesirable effects of excessive exposures leading to discoloration.

- Standard related to this effect: Fluoride.

Technical Effects
Corrosivity, and staining related to corrosion, not only affect the aesthetic quality of water, but may also have significant economic implications. Other effects of corrosive water, such as the corrosion of iron and copper, may stain household fixtures, and impart objectionable metallic taste and red or blue-green color to the water supply as well. Corrosion of distribution system pipes can reduce water flow.

- Standards related to corrosion and staining: Chloride, Copper, Corrosivity, Iron, Manganese, pH, Total Dissolved Solids, Zinc.

Scaling and sedimentation are other processes which have economic impacts. Scale is a mineral deposit which builds up on the insides of hot water pipes, boilers, and heat exchangers, restricting or even blocking water flow. Sediments are loose deposits in the distribution system or home plumbing.

- Standards related to scale and sediments: Iron, pH, Total Dissolved Solids, Aluminum.
PUBLIC NOTIFICATION

In addition to monitoring requirements, the federal government realizes that an important element of public safety is keeping the customer informed about the quality of their drinking water. Two regulations that were enacted to accomplish this goal are the Consumer Confidence Report Rule, published: August 19, 1998 and the Public Notification Rule, published on May 4, 2000.

Despite the great efforts of water suppliers, problems with drinking water can and do occur. When problems arise, people who drink the water have a right to know what happened and what they need to do. The public notice requirements of the SDWA require water suppliers to provide this notice. As water suppliers test their water, they may discover that levels of certain contaminants are higher than the standards set by EPA or states. This might happen due to a change in local water conditions, heavy rainstorms, or an accidental spill of a hazardous substance. Water suppliers may also fail to take one or a series of their required samples. Any time a water supplier fails to meet all EPA and state standards for drinking water (including missing required samples or taking them late), the water supplier must inform the people who drink the water. These notices immediately alert consumers if there is a serious problem with their drinking water that may pose a risk to public health. They also notify customers if their water does not meet drinking water standards, the water system fails to test its water, or if the system has been granted a variance (use of less costly technology) or an exemption (more time to comply with a new regulation).

Consumer Confidence Reports
The guiding principle behind Consumer Confidence Report (CCR) Rule is that all people have the right to know what is in their drinking water and where it comes from. The CCR provides an opportunity for water suppliers to educate consumers about the sources and quality of their drinking water and to involve them in decisions about it. The EPA has revised its public notification requirements to speed up notification of serious health threats, and simplify notification of other violations. Consumers who are familiar with the basic drinking water information in CCRs will be able to participate more effectively in these processes. The reports will not only help consumers to make informed choices that affect the health of themselves and their families, they will encourage consumers to consider the challenges of delivering safe drinking water. Educated consumers are more likely to help protect drinking water sources and to be more understanding of the need to upgrade the treatment facilities that makes their drinking water safe. Even before generation and distribution of a CCR was required, many water suppliers saw the benefits associated with educating consumers and were distributing some form of a CCR voluntarily.

What is a consumer confidence report?
The SDWA requires all community water systems deliver to their customers an annual water quality report. The law specifies certain content for the reports, and requires water systems to distribute these reports to all of their customers. CCRs summarize information that water systems already collect. The report includes basic information on the source(s) of water, the levels of any contaminants detected in the water, and compliance with other drinking water rules, as well as some brief educational material. EPA expects that most reports will fit on one or two sheets of paper. A report that contains too much information, or is full of technical jargon, will discourage consumers from learning the basics about their drinking water.
Who must prepare a consumer confidence report?
Every community water system that serves at least 25 residents year round or that has at least 15 service connections must prepare and distribute a consumer confidence report. These systems typically include cities, towns, homeowners associations, and mobile home parks. A community water system that sells water (parent supply) to another community water system (satellite supply) must provide monitoring data and other information that will enable the satellite to produce a CCR.

When must a water system prepare and distribute a consumer confidence report?
The reports are based on calendar year data. Beginning in the year 2000, systems must deliver reports for the previous year by July 1. Parent supplies must deliver information to their satellites by April 19, 1999, and annually thereafter. The two systems may enter a contractual agreement that could result in an alternate delivery date of sample data to the satellite. A new community water system must deliver its first report by July 1 of the year following its first full calendar year in operation, and annually thereafter.

Whereas the CCR is designed to provide information to customers on an annual basis, the Public Notification Rule specifies how water suppliers must inform their customers in the event of a MCL violation or emergency situation. This rule went into effect in May 2000 and established specific language, actions, time frames, and methods that must be used to notify the public in these situations. The Public Notification Rule establishes Tiers for each contaminant and the type of situation that resulted in the violation.

What is public notification?
Public notification (PN) is intended to ensure that consumers will always know if there is a problem with their drinking water. PWSs must notify the people who drink their water if the level of a contaminant in the water exceeds EPA and State drinking water regulations, if there is a waterborne disease outbreak or any other situation that may pose a risk to public health, if the water system fails to test its water as required, or if the system has a variance or exemption from the regulations. Depending on the severity of the situation, water suppliers have from 24 hours to one year to notify their customers. PN is provided in addition to the CCR to provide customers with a more complete picture of drinking water quality and system operations.

EPA sets strict requirements on the form, manner, content, and frequency of public notices. Notices must contain:

- A description of the violation that occurred, including the potential health effects
- The population at risk and if alternate water supplies need to be used
- What the water system is doing to correct the problem
- Actions consumers can take
- When the violation occurred and when the system expects it to be resolved
- How to contact the water system for more information
- Language encouraging broader distribution of the notice

EPA specifies three categories, or tiers, of public notification. Depending on what tier a violation or situation falls into, water systems have different amounts of time to distribute the notice and different ways to deliver the notice:

Tier 1 Public Notice - Required Within 24 Hours
Any time a violation and situation with significant potential to have serious adverse effect on
human health as a result of short-term exposure, water suppliers have 24 hours to notify people
who may drink the water of the situation. Water suppliers must use media outlets such as
television, radio, and newspapers, post their notice in public places, or personally deliver a notice
to their customers in these situations.

Examples of Tier 1 Violations:
- Violation of the MCL for total coliform, when fecal coliform or Escherichia coli
 (herein referred to as E. coli) are present in the water distribution system, or
 failure to test for fecal coliform or E. coli when any repeat sample tests positive
 for coliform;
- Violation of the MCL for nitrate, nitrite, or total nitrate and nitrite; or when a
 confirmation sample is not taken within 24 hours of the system’s receipt of the
 first sample showing exceedance of the nitrate or nitrite MCL;
- Exceedance of the nitrate MCL (10 milligrams per liter (mg/L)) by non-
 community water systems, where permitted to exceed the MCL (up to 20 mg/L)
 by the primacy agency;
- Violations of the maximum residual disinfection level (MRDL) for chlorine
dioxide when one or more of the samples taken in the distribution system on the
 day after exceeding the MRDL at the entrance of the distribution system or when
 required samples are not taken in the distribution system;
- Violation of the turbidity MCL of 5 nephelometric turbidity unit (NTU), where
 the primacy agency determines after consultation that a Tier 1 notice is required
 or where consultation does not occur in 24 hours after the system learns of
 violation;
- Violation of the TT requirement resulting from a single exceedance of the
 maximum allowable turbidity limit, where the primacy agency determines after
 consultation that a Tier 1 notice is required or where consultation does not take
 place in 24 hours after the system learns of violation;
- Occurrence of a waterborne disease outbreak, as defined in 40 CFR 141.2, or
 other waterborne emergency; and
- Other violations or situations with significant potential for serious adverse effects
 on human health as a result of short-term exposure, as determined by the OEHS
 either in its regulations or on a case-by-case basis.

* If your system has any of these violations or situations, in addition to issuing public notice, you
 must initiate consultation with your primacy agency as soon as practical but within 24 hours after
 you learn of the violation or situation.

Tier 2 Public Notice - Required Within 30 Days (unless extended to 90 days by State)
Any time a violation and situation with potential to have serious, but not immediate, adverse
effects on human health, water suppliers must supply notices within 30 days, or as soon as
possible, with extension of up to three months for resolved violations at the discretion of the
OEHS. Notice may be provided via the media, posting, or through the mail.

Examples of Tier 2 Violations:
- All violations of the MCL, MRDL, and TT requirements except where Tier 1
 notice is required.
• Violations of monitoring requirements where OEHS determines that a Tier 2 public notice is required, taking into account potential health impacts and persistence of the violation.
• Failure to comply with the terms and conditions of any variance or exemption in place.

Tier 3 Public Notice - Required Within 1 Year
When water systems violate a drinking water standard that does not have a direct impact on human health, for all other violations not included in Tier 1 or Tier 2, the water supplier has up to a year to provide a notice of this situation to its customers. The extra time gives water suppliers the opportunity to consolidate these notices and send them with annual water quality reports (CCRs).

Examples of Tier 3 Violations:
• Monitoring violations, except where Tier 1 notice is required or the primary agency determines that the violation requires a Tier 2 notice.
• Failure to comply with an established testing procedure, except where Tier 1 notice is required or the primary agency determines that the violation requires a Tier 2 notice.
• Operation under a variance granted under §1415 or exemption granted under §1416 of the SDWA.
• Availability of unregulated contaminant monitoring results.
• Exceedance of the secondary maximum contaminant level for fluoride.

Tier Determination
In any of the above situations, the water supplier must notify OEHS as soon as possible for a determination of what Tier applies to a given situation. OEHS will make a determination and work with you to provide the appropriate language and steps you must take to notify the public. “When in doubt, call the OEHS and find out.”

What information must be included in a notice?
Your public notice must include specific information in order to be considered complete. Each notice must contain information addressing ten elements, including use of standard health effects language for MCL and treatment technique violations and standard language for monitoring violations. PWSs serving a large proportion of non-English speaking consumers are also required to include information in the notice in languages other than English.

For each violation and situation requiring notice (except for fluoride secondary maximum contaminant level (SMCL) exceedances, availability of unregulated contaminant monitoring data, and operation under a variance or exemption), you must provide a clear and easy-to-understand explanation of the following:

1. The violation or situation, including the contaminant(s) of concern, and (as applicable) the contaminant level(s);
2. When the violation or situation occurred;
3. Any potential adverse health effects from drinking the water, using mandatory language;
4. The population at risk, including subpopulations that may be particularly vulnerable if exposed to the contaminant in their drinking water;
5. Whether alternate water supplies should be used;
6. Actions consumers should take, including when they should seek medical help, if known;
7. What you are doing to correct the violation or situation;
8. When you expect to return to compliance or resolve the situation;
9. Your name, business address, and phone number or those of a designee of the PWS as a source of additional information concerning the notice; and
10. A statement encouraging notice recipients to distribute the notice to others, where applicable, using the standard language.

Some required elements may not apply to every violation or situation. However, you must still address these elements in your notice. For example, if it is unnecessary for consumers to boil their water or drink bottled water, you should tell them they do not need to do so. This is especially important for Tier 2 notices, where a violation may have been resolved by the time the notice is issued or may not be an immediate health risk.

Certification of Compliance.
After you provide the notice to your consumers, you must, within 10 days, send OEHS a copy of each type of notice you distribute (e.g., newspaper article, press release to TV/radio, mail notices) and a certification that you have met all the public notification requirements.
BOIL WATER NOTICE

Water treatment professionals must regard public health protection as the highest priority. Although every water treatment plant operator strives to produce high quality water, if a test result or a condition exists that may threaten public health, a boil water notice (BWN) must be considered.

Therefore, water professionals must develop BWN criteria and action plans before there is a problem, not during a crisis. BWNs require a considerable amount of thought if they are to be carried out in timely fashion. One of the most important aspects of BWN’s is determining what circumstances will trigger the event, a few examples are:

- A violation of the total coliform rule;
- Loss of disinfection residuals at the point of entry;
- High filter effluent turbidities;
- Loss of pressure in the distribution system;
- Cross-connection/backflow incidents;
- Major water main breaks; or,
- Breaches in the integrity of water storage facilities.

There is no single perfect action plan for all utilities: each must be tailored to the specific system and situation. It is essential that plant staff focus on the challenge of fixing the problem that prompted the BWA thus protecting public health. Text of the public notification regulation can be found in the EPA Public Notification Handbook, on the OEHS website or by contacting your OEHS district office engineer.

Professional judgment and discretion are necessary in making decisions on the issuance of a notice. The water supplier is advised to consult with the local primacy agency to discuss the criteria for issuing public notices or BWNs. These discussions should include the actual wording and conditions for issuing the advisory.

DO NOT DRINK THE WATER WITHOUT BOILING IT FIRST. Bring all water to a boil, let it boil for one minute, and let it cool before using, or use bottled water. Boiled or bottled water should be used for drinking, making ice, brushing teeth, washing dishes, bathing, and food preparation until further notice. Boiling kills bacteria and other organisms in the water.

Once the criteria to issue a BWN have been met, prompt action is necessary. Failure to issue a timely BWN could lead to serious public health, financial, and public relations consequences. Customer confidence may be eroded or elevated depending on the timeliness and accuracy of the information they require. BWNs erode public confidence if they are not issued in time or issued too often.

TOTAL COLIFORM RULE

The Total Coliform Rule (TCR) published on June 29, 1989 sets both health goals (MCLGs) and legal limits (MCLs) for the presence of total coliform in drinking water and applies to all community and non-community water systems. The rule also details the type and frequency of testing that water systems must undertake.

In the rule, EPA set the MCLG for total coliforms at zero. Since there have been waterborne disease outbreaks in which researchers have found very low levels of coliforms, any level indicates some health risk.

EPA also set a legal limit on total coliforms. Systems must not find coliforms in more than 5% of the samples they take each month to meet EPA’s standards. If more than 5% of the samples contain coliforms, water system operators must report this violation to the state and the public.

The TCR requires all PWSs to monitor for the presence of total coliforms in the distribution system. Total coliforms are a group of closely related bacteria that are (with few exceptions) not harmful to humans. Because total coliforms are common inhabitants of ambient water and may be injured by environmental stresses (e.g., lack of nutrients) and water treatment (e.g., chlorine disinfection) in a manner similar to most bacterial pathogens and many viral enteric pathogens, EPA considers them a useful indicator of these pathogens. More important, for drinking water, total coliforms are used to determine the adequacy of water treatment and the integrity of the distribution system. The absence of total coliforms in the distribution system minimizes the likelihood that fecal pathogens are present. Thus, total coliforms are used to determine the vulnerability of a system to fecal contamination. The TCR requires systems to monitor for total coliforms at a frequency proportional to the number of people served. If any sample tests positive for total coliforms, the system must perform the following additional tests:

- Further test that culture for the presence of either fecal coliforms or \textit{E. coli};
- Take one set of 3-4 repeat samples at sites located within 5 or fewer sampling sites adjacent to the location of the routine positive sample within 24 hours; and
- Take at least 5 routine samples the next month of operation

If a sample tests positive for coliforms, the system must collect a set of repeat samples within 24 hours. When a routine or repeat sample tests positive for total coliforms, it must also be analyzed for fecal coliforms and \textit{E. coli}, which are a type of coliform bacteria that are directly associated with fresh feces. A positive result to this last test signifies an acute MCL violation, which necessitates rapid state and public notification because it represents a direct health risk.
The Surface Water Treatment Rule (SWTR), published in the Federal Register on June 29, 1989, promulgated a NPDWR for public water systems using surface water sources or groundwater sources under the direct influence of surface water. The SWTR includes: (1) criteria under which filtration is required and procedures by which the States are to determine which systems must install filtration; and (2) disinfection requirements. The filtration and disinfection requirements are treatment technique requirements to protect against the potential adverse health effects of exposure to Giardia, viruses, Legionella, and heterotrophic bacteria, as well as many other pathogenic organisms that are removed by these treatment techniques. The SWTR also contains certain limits on turbidity as criteria for (1) determining whether a public water system is required to filter; and (2) determining whether filtration, if required, is adequate.

Technologies Evaluated for the First Compliance Technology List

The SWTR enables EPA to issue “log removal credits” to water utilities through a requirement for particular water treatments, rather than a requirement for utilities to meet an MCL, which would require the technically difficult feat of monitoring for the microorganisms. Inactivation requirements are 99.9% (3 log) for Giardia cysts and 99.99% (4 log) for viruses. The inactivation requirements can be met through disinfection alone or a combination of filtration and disinfection. The SWTR lists four filtration technologies: 1) conventional filtration, including sedimentation; 2) direct filtration; 3) diatomaceous earth filtration; and 4) slow sand filtration. Disinfection treatment is required to follow all of these filtration treatments. The disinfection technologies listed in the SWTR are chlorine, ozone, chlorine dioxide, and chloramine.

The filtration and disinfection technologies identified in the SWTR were evaluated along with other technologies that may achieve the desired inactivation. Filtration processes that function on principles other than those of the listed technologies are referred to as “alternative filtration technologies”. In addition to the listed filtration technologies in the SWTR, this guidance considers other alternative filtration technologies: reverse osmosis filtration, microfiltration, ultrafiltration, and nanofiltration. In addition to the SWTR listed disinfection technologies, this guidance considers two new disinfection technologies: mixed-oxidant disinfection and ultraviolet radiation.

Compliance Technology Evaluation of Disinfection Technologies

Six disinfection technologies have been evaluated as possible compliance technologies. Since the viability of the 4 technologies listed in the SWTR has already been summarized in the SWTR guidance manual, their technology summaries are brief.

Inactivation contact time (CT) values for the disinfectants listed in the SWTR were published by EPA in the 1989 guidance for the SWTR. “CT” refers to the product of the residual disinfectant concentration in mg/L, “C”, and the disinfectant contact time in minutes, “T”. The disinfectant contact time is defined as the time required for the water being treated to flow from the point of disinfectant application to a point before or at the first customer during peak hourly flow. There is a relationship between CT and inactivation percent removal (or log removal) for a given disinfectant. Since the determination of percent removal of a microbiological contaminant is more technically demanding than the calculation of CT, CT is used as a surrogate for percent removal for a given disinfectant.
EPA finalized the **Interim Enhanced Surface Water Treatment Rule (IESWTR)** on December 16, 1998. The IESWTR applies to public water systems that use surface water or **groundwater under the direct influence of surface water (GWUDI)** and serve at least 10,000 people. In addition, States are required to conduct sanitary surveys for all surface water and GWUDI systems, including those that serve fewer than 10,000 people.

The IESWTR amends the existing SWTR to strengthen microbial protection, including provisions specifically to address *Cryptosporidium*, and to address risk trade-offs with disinfection byproducts. The final rule includes treatment requirements for waterborne pathogens, e.g., *Cryptosporidium*. In addition, systems must continue to meet existing requirements for *Giardia* and viruses. Specifically, the rule includes:

- Maximum contaminant level goal (MCLG) of zero for *Cryptosporidium*
- 2-log *Cryptosporidium* removal requirements for systems that filter
- Strengthened combined filter effluent turbidity performance standards
- Individual filter turbidity monitoring provisions
- Disinfection profiling and benchmarking provisions
- Systems using groundwater under the direct influence of surface water now subject to the new rules dealing with *Cryptosporidium*
- Inclusion of *Cryptosporidium* in the watershed control requirements for unfiltered PWS
- Requirements for covers on new finished water reservoirs
- Sanitary surveys, conducted by States, for all surface water systems regardless of size

The rule, with tightened turbidity performance criteria and individual filter monitoring requirements, is designed to optimize treatment reliability and to enhance physical removal efficiencies to minimize the *Cryptosporidium* levels in finished water. Turbidity requirements for combined filter effluent will remain at least every 4 hours, but continuous monitoring will be required for individual filters. In addition, the rule includes disinfection profiling and benchmarking provisions to assure continued levels of microbial protection while facilities take the necessary steps to comply with new **disinfection byproduct (DBP)** standards.
EPA finalized the Long Term 1 Enhanced Surface Water Treatment Rule (LT1ESWTR) on January 14, 2002. The LT1ESWTR applies to all public water systems that use surface water or GWUDI and serve fewer than 10,000 persons.

The purposes of the LT1ESWTR are to improve control of microbial pathogens, specifically the protozoan Cryptosporidium, in drinking water, and address risk trade-offs with disinfection byproducts.

The rule will require certain PWSs to meet strengthened filtration requirements. It will also require systems to calculate levels of microbial inactivation to ensure microbial protection is not jeopardized if systems make changes to comply with requirements of the Stage 1 Disinfectants and Disinfection Byproducts Rule (Stage 1-DBPR). This rule, which addresses subpart H systems serving fewer than 10,000 persons, builds upon the framework established for larger systems in the IESWTR.

The LT1ESWTR provisions fall into the four following categories:

1. **Cryptosporidium Removal**
 - All systems must achieve a 2-log removal (99%) of Cryptosporidium.

2. **Enhanced Filtration Requirements**
 - Filtered systems must comply with strengthened combined filter effluent (CFE) turbidity performance requirements to assure 2-log removal of Cryptosporidium; and
 - Conventional and direct filtration systems must continuously monitor the turbidity of individual filters and comply with follow-up activities based on this monitoring.

3. **Microbial Inactivation Benchmarking**
 - Systems will be required to develop a profile of microbial inactivation levels unless they perform monitoring which demonstrates their disinfection byproduct levels are less than 80% of the MCLs established in the Stage 1 DBPR; and
 - Systems considering making a significant change to their disinfection practice must determine their current lowest level of microbial inactivation and consult with the state for approval prior to implementing the change.

4. **Other Requirements**
 - Finished water reservoirs for which construction begins 60 days after promulgation of the rule must be covered; and
 - Unfiltered systems must comply with updated watershed control requirements that add Cryptosporidium as a pathogen of concern.

These requirements were developed based on the IESWTR, but have been modified to reduce the burden on small systems.
The Long Term 2 Enhanced Surface Water Treatment Rule (LT2ESWTR) builds upon earlier rules to address higher risk public water systems for protection measures beyond those required for existing regulations.

EPA finalized the LT2ESWTR on January 5, 2006 and applies to all public water systems that use surface water or groundwater under the direct influence of surface water. The purpose of the LT2ESWTR is to reduce illness linked with the contaminant Cryptosporidium and other pathogenic microorganisms in drinking water. The LT2ESWTR will supplement existing regulations by targeting additional Cryptosporidium treatment requirements to higher risk systems. This rule also contains provisions to reduce risks from uncovered finished water reservoirs and provisions to ensure that systems maintain microbial protection when they take steps to decrease the formation of disinfection byproducts that result from chemical water treatment.

The LT2ESWTR requires:
1. Systems to monitor their water sources to determine treatment requirements. This monitoring includes an initial 2 years of monthly sampling for Cryptosporidium.
 - To reduce monitoring costs, small filtered water systems will first monitor for E. coli—bacterium which is less expensive to analyze than Cryptosporidium—and will monitor for Cryptosporidium only if their E. coli results exceed specified concentration levels.
 - Monitoring starting dates are staggered by system size, with smaller systems beginning monitoring after larger systems. Systems must conduct a second round of monitoring six years after completing the initial round to determine if source water conditions have changed significantly.
 - Systems may use (grandfather) previously collected data in lieu of conducting new monitoring, and systems are not required to monitor if they provide the maximum level of treatment required under the rule.
2. Filtered water systems will be classified in one of four treatment categories (bins) based on their monitoring results.
 - The majority of systems will be classified in the lowest treatment bin, which carries no additional treatment requirements.
 - Systems classified in higher treatment bins must provide 90 to 99.7% (1.0 to 2.5-log) additional treatment for Cryptosporidium.
 - Systems will select from a wide range of treatment and management strategies in the "microbial toolbox" to meet their additional treatment requirements.
 - All unfiltered water systems must provide at least 99 or 99.9% (2 or 3-log) inactivation of Cryptosporidium, depending on the results of their monitoring.
3. Systems that store treated water in open reservoirs must either cover the reservoir or treat the reservoir discharge to inactivate 4-log virus, 3-log Giardia, and 2-log Cryptosporidium. These requirements are necessary to protect against the contamination of water that occurs in open reservoirs.
4. In addition, systems must review their current level of microbial treatment before making a significant change in their disinfection practice.
EPA finalized the **Stage 1 Disinfectants and Disinfection Byproducts Rule (Stage 1 DBPR or S1DBPR)** and applies to community water systems and non-transient non-community systems and transient non-community water systems using chlorine dioxide MCLs, including those serving fewer than 10,000 people, that add a disinfectant to the drinking water during any part of the treatment process.

The Stage 1 Disinfectant and Disinfection Byproduct Rule updates and supersedes the 1979 regulations for total trihalomethanes. In addition, it will reduce exposure to three disinfectants and many disinfection byproducts.

The final Stage 1 Disinfectants and Disinfection Byproducts Rule include the following key provisions:

- **Maximum residual disinfectant level goals (MRDLGs)** for chlorine (4 mg/L), chloramines (4 mg/L), and chlorine dioxide (0.8 mg/L).
- **Maximum contaminant level goals (MCLGs)** for three trihalomethanes (bromodichloromethane (zero), dibromochloromethane (0.06 mg/L), and bromoform (zero)), two haloacetic acids (dichloroacetic acid (zero) and trichloroacetic acid (0.3 mg/L)), bromate (zero), and chlorite (0.8 mg/L).
- **Maximum residual disinfectant levels (MRDLs)** for three disinfectants (chlorine (4.0 mg/L), chloramines (4.0 mg/L), and chlorine dioxide (0.8 mg/L))
- **MCLs for total trihalomethanes (0.080 mg/L)** - a sum of the three listed above plus chloroform, haloacetic acids (HAA5) (0.060 mg/L) - a sum of the two listed above plus monochloroacetic acid and mono- and dibromoacetic acids), and two inorganic disinfection byproducts (chlorite (1.0 mg/L)) and bromate (0.010 mg/L)).
- A treatment technique for removal of DBP precursor material. Water systems that use surface water or groundwater under the direct influence of surface water and use conventional filtration treatment are required to remove specified percentages of organic materials, measured as total organic carbon (TOC), that may react with disinfectants to form **disinfection byproducts (DBPs)**. Removal will be achieved through a treatment technique (enhanced coagulation or enhanced softening) unless a system meets alternative criteria.

The terms MRDLG and MRDL, which are not included in the SDWA, were created during the negotiations to distinguish disinfectants (because of their beneficial use) from contaminants. The final rule includes monitoring, reporting, and public notification requirements for these compounds. This final rule also describes the **best available technology (BAT)** upon which the MRDLs and MCLs are based.
STAGE 2 DISINFECTANTS AND DISINFECTION BYPRODUCT RULE

EPA published the *Stage 2 Disinfectants and Disinfection Byproduct Rule (Stage 2 DBPR or S2DBPR)* on January 4, 2006 and applies to community and nontransient noncommunity water systems that add and/or deliver water that is treated with a primary or residual disinfectant other than ultraviolet light.

The **combined distribution system (CDS)** is defined as the interconnected distribution system consisting of all PWSs that provide water and the systems that receive finished water. The population of the largest system in the group sets the schedule for the whole group.

Under the Stage 2 DBP rule, systems will conduct an evaluation of their distribution systems, known as an **Initial Distribution System Evaluation (IDSE)**, to identify the locations with high disinfection byproduct concentrations. These locations will then be used by the systems as the sampling sites for Stage 2 DBP rule compliance monitoring.

The IDSE is a special sampling activity to find highest areas for disinfection byproduct formation. The IDSE process will result in selection of new Stage 2 DBP compliance sample sites to replace the Stage 1 DBP compliance sample sites. There are four ways to comply with the IDSE:

1. Do standard IDSE sampling.
2. Serve fewer than 500 people (**very small system (VSS) waiver**).
3. Have less than 40 **micrograms per liter (μg/L)** or parts per billion (ppb) TTHM and less than 30 μg/L HAA5 in all Stage 1 DBP compliance samples (**40/30 waiver**).
4. Do a **system-specific study (SSS)** as described in the rule.

The number of IDSE sample sites will be based on population and type of water. Larger systems will be required to set more sites than small systems; systems that treat or purchase surface water (or groundwater under the direct influence of surface water) will set more sites than systems that just use groundwater.

Compliance with the maximum contaminant levels for two groups of disinfection byproducts (TTHM and HAA5) will be calculated for each monitoring location in the distribution system. This approach, referred to as the **locational running annual average (LRAA)**, differs from current requirements, which determine compliance by calculating the **running annual average (RAA)** of samples from all monitoring locations across the system. A LRAA is the yearly average of all the results at each specific sampling site in the distribution system.

The Stage 2 DBP rule also requires each system to determine if they have exceeded an operational evaluation level, which is identified using their compliance monitoring results. The operational evaluation level provides an early warning of possible future MCL violations, which allows the system to take proactive steps to remain in compliance. A system that exceeds an operational evaluation level is required to review their operational practices and submit a report to their state that identifies actions that may be taken to mitigate future high DBP levels, particularly those that may jeopardize their compliance with the DBP MCLs.
LEAD AND COPPER RULE

On June 7, 1991, EPA published a regulation to control lead and copper in drinking water. This regulation is known as the Lead and Copper Rule (LCR) applies to all community water systems and non-transient non-community systems. Lead and copper enter drinking water primarily through plumbing materials. Exposure to lead and copper may cause health problems ranging from stomach distress to brain damage.

The treatment technique for the rule requires systems to monitor drinking water at customer taps. If lead concentrations exceed an action level of 0.015 mg/L or 15 parts per billion (ppb) or copper concentrations exceed an action level of 1.3 mg/L or 1.3 parts per million (ppm) in more than 10% of customer taps sampled, the system must undertake a number of additional actions to control corrosion. If the action level for lead is exceeded, the system must also inform the public about steps they should take to protect their health and may have to replace lead service lines under their control.

The LCR has 4 basic requirements:
1. Require water suppliers to optimize their treatment system to control corrosion in customer’s plumbing;
2. Determine tap water levels of lead and copper for customers who have lead service lines or lead-based solder in their plumbing system;
3. Rule out the source water as a source of significant lead levels; and,
4. If lead action levels are exceeded, require the suppliers to educate their customers about lead and suggest actions they can take to reduce their exposure to lead through public notices and public education programs.

If a water system, after installing and optimizing corrosion control treatment, continues to fail to meet the lead action level, it must begin replacing the lead service lines under its ownership.

Calculating the 90th Percentile
Calculate the 90th percentiles for lead and copper as described below:
1. List the lead results in ascending order in a column with the lowest concentration at the top of the list and highest concentration at the bottom of the list. Number each entry. Repeat this listing process using the copper results. Use the enclosed “Lead and Copper 90th Percentile Summary” form (or a similar reporting format that includes the same information) when submitting your 90th percentile calculations.
2. Multiply the number of samples in each column x 0.9 to determine the sample number that represents the 90th percentile.
 Example: 20 samples x 0.9 = 18
 Therefore, the result for the 18th sample in the ascending list is the 90th percentile.
3. If you sample from only five locations, the 90th percentile value is calculated by averaging the 4th and 5th highest results.
Example of Calculating the 90th Percentile

1. If a system collected 50 samples, the 90th percentile would be in the _____ value place.

 \[50 \text{ samples} \times 0.90 = 45 \]

 Therefore, the result of the 45th sample in the ascending list is the 90th percentile.

2. A system collected 5 samples with the following results: 0.023 mg/L, 0.004 mg/L, 0.014 mg/L, 0.008 mg/L, and 0.019 mg/L. What is the 90th percentile?

 \[
 \begin{array}{|c|c|}
 \hline
 \text{Sample #} & \text{Result (mg/L)} \\
 \hline
 1 & 0.004 \\
 2 & 0.008 \\
 3 & 0.014 \\
 4 & 0.018 \\
 5 & 0.023 \\
 \hline
 \end{array}
 \]

 Results from \[
 \frac{4^{\text{th}} + 5^{\text{th}}}{2} = \frac{0.018 + 0.023}{2} = 0.0205 \text{ mg/L}
 \]

 Answer: The 90th percentile is 0.021 mg/L.

3. What is the 90th percentile for a system with the following sample results: 0.013 mg/L, 0.012 mg/L, 0.019 mg/L, 0.02 mg/L, 0.013 mg/L, 0.007 mg/L, 0.011 mg/L, 0.022 mg/L, 0.017 mg/L, 0.015 mg/L?

 \[10 \text{ samples} \times 0.90 = 9 \]

 Therefore, the result of the 9th sample in the ascending list is the 90th percentile.

 \[
 \begin{array}{|c|c|}
 \hline
 \text{Sample #} & \text{Result (mg/L)} \\
 \hline
 1 & 0.007 \\
 2 & 0.011 \\
 3 & 0.012 \\
 4 & 0.013 \\
 5 & 0.013 \\
 6 & 0.015 \\
 7 & 0.017 \\
 8 & 0.019 \\
 9 & 0.020 \\
 10 & 0.022 \\
 \hline
 \end{array}
 \]

 Answer: The 90th percentile (or 9th sample) is 0.020 mg/L.
LEAD AND COPPER 90th PERCENTILE SUMMARY

Public Water System ID#: _______________________ Date: _______________________

System: __

Compliance Period: _____________________ Monitoring Frequency: ______________________

<table>
<thead>
<tr>
<th>No.</th>
<th>Location Code</th>
<th>Tier/Target Category</th>
<th>Lead(^2) mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>Location Code</th>
<th>Tier/Target Category</th>
<th>Copper(^2) mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 90th Percentile Level = Concentration in the sample with sequence number yielded by 0.9 x number of samples. (Only 10% of the samples have higher lead or copper values.) For 5 samples, 90th Percentile Level is the average of 4th and 5th highest samples.

2 Arrange in ascending order. (Place results of all lead or copper samples taken during the monitoring period in order from the sample with the lowest concentration at the top to the sample with the highest concentration at the bottom.) Attach additional pages if necessary.
FILTER BACKWASH RECYCLING RULE

The Filter Backwash Recycling Rule (FBRR), promulgated on June 8, 2001, established a standard to return all recycle flows to a point that incorporates all treatment processes of the system’s existing conventional or direct filtration systems or at an alternate location approved by the state. The regulation will apply to PWSs that use surface water or groundwater under the direct influence of surface water, practice conventional or direct filtration, and recycle spent filter backwash, sludge thickener supernatant, or liquids from dewatering processes.

The FBRR applies to all PWSs that meet all of the following criteria:

- The system is a Subpart H system, (i.e. uses surface water or GWUDI).
- The system treats water using conventional or direct filtration.
- The system recycles one or more of the following: spent filter backwash water, thickener supernatant, or liquids from dewatering processes.

The FBRR has three main components:

- **Reporting.** The FBRR requires a system to notify the State in writing about its recycle practices if the system is a Subpart H system, practices conventional or direct filtration, and recycles one or more of the regulated recycle streams.
- **Recycle Return Location.** The FBRR requires regulated recycle streams to be returned through all processes of a system’s existing conventional or direct filtration system, as defined in 40 CFR 141.2. However, a system may recycle at an alternate location if approved by the State.
- **Recordkeeping.** The FBRR includes recordkeeping requirements related to recycling procedures.
THE PHASE I, II, IIb, and V RULES

EPA regulates most chemical contaminants through the rules known as Phase I, II, IIb, and V. The Agency issued the four rules regulating 69 contaminants over a 5 year period as it gathered, updated, and analyzed information on each contaminant's presence in drinking water supplies and its health effects. In each rule, EPA set limits on the contaminants, prescribed the schedule under which water systems must test for the presence of the contaminants, and described the treatments which systems may use to remove a detected contaminant. In some cases, EPA revised limits which existed prior to 1986.

For each contaminant, EPA set a health goal, or Maximum Contaminant Level Goal (MCLG). This is the level at which a person could drink 2 liters of water containing the contaminant every day for 70 years without suffering any ill effects. This goal is not a legal limit with which water systems must comply; it is based solely on human health. For known cancer-causing agents (carcinogens), EPA set the health goal at zero, under the assumption that any exposure to the chemical could present a cancer risk.

The rules also set a legal limit (MCL), for each contaminant. EPA sets the MCL as close to the health goal (MCLG) as possible, keeping in mind the technical and financial barriers that exist. Except for contaminants regulated as carcinogens, most legal limits and health goals are the same. Even when they are less strict than the health goals, the legal limits provide substantial public health protection.

The contaminants regulated in these rules pose long-term, or chronic, health risks. Some can accumulate in the liver or kidneys and interfere with their functions. Others could affect the nervous system if ingested over a lifetime at levels consistently above the MCL. Several of these contaminants have MCLGs of zero because EPA believes that they cause cancer and assumes that any amount of exposure, no matter how small, poses some risk of cancer. Other contaminants present health risks only at levels above their legal limits.

The Phase I Rule (published July 8, 1987) was EPA's first response to the 1986 Amendments. The rule limits exposure to 8 chemicals that may be present in tap water. All 8 are volatile organic chemicals (VOCs) industries use in the manufacture of rubber, pesticides, deodorants, solvents, plastics, and other chemicals. The rule requires water systems to monitor and, if levels exceed legal limits, take corrective action to ensure that consumers receive water that does not contain harmful levels of the chemicals.

When it issued the Phase II and IIb Rules (published January 30 and July 1, 1991), EPA updated or created legal limits on 38 contaminants. Some of these contaminants are frequently-applied agricultural chemicals (nitrate is often present in areas where farmers apply fertilizer) while others are more obscure industrial intermediates (trans-1,2-Dichloroethylene is a solvent and chemical used in the production of other chemicals).

For 36 of the 38 contaminants that the Phase II and IIb rules address, EPA set both health goals and legal limits. The other 2 contaminants that EPA regulated through the rules, Acrylamide and Epichlorohydrin, are chemicals that some water systems add during the water treatment process. Known as flocculants, these chemicals bond with dirt and other tiny contaminants in water and drag them to the bottom of the treatment tank. Water systems then use the cleaner water from the
top of the tank. The rules limit the amount of these chemicals that systems may add to water during the treatment process.

The **Phase V Rule** (published July 17, 1992) set standards for 23 more contaminants. Several are inorganic chemicals such as cyanide that are present naturally in some water, though only at trace levels. Industrial activity accounts for the potentially harmful levels of these contaminants in drinking water. Other Phase V contaminants are pesticides. These chemicals enter water supplies through run-off from fields where farmers have applied them or by leaching through the soil into groundwater.

EPA set different monitoring schedules for different contaminants, depending on the routes by which each contaminant enters the water supply. In general, surface water systems must take samples more frequently than groundwater systems because their water is subject to more external influences. Systems which prove over several years that they are not susceptible to contamination can usually get state permission to reduce the frequency of monitoring.

Asbestos, for example, is unlikely to appear suddenly in a system's water. If a system has asbestos-concrete water mains and water of certain corrosiveness, or if asbestos is present naturally in an area, the system might detect asbestos in its water. Otherwise, a system which has never detected asbestos must test for asbestos only once every 9 years. If the system were ever to detect asbestos, it would have to begin more frequent monitoring.

Nitrate and pesticide levels, on the other hand, vary depending on rainfall and farmers' schedules. Systems in areas prone to nitrate problems test quarterly to track the seasonal variations. If a system does not detect contaminants in initial samples, then repeat sampling frequencies will be lower than initial frequencies.
ARSENIC RULE

Published on January 22, 2001, the Arsenic Rule revises the current MCL from 50 µg/L to 10 µg/L and sets a MCLG of zero for arsenic in drinking water. In addition, this final rule also clarifies how compliance is demonstrated for many inorganic and organic contaminants in drinking water.

What are the requirements of this final rule?
Both community water systems (CWSs) and non-transient, non-community water systems (NTNCWSs) will be required to reduce the arsenic concentration in their drinking water systems to 10 µg/L.

- Makes the arsenic maximum contaminant level (MCL) more stringent by lowering the level from 0.05 mg/L (50 µg/L or 50 ppb) to 0.01 mg/L (10 µg/L or 10 ppb) (40 CFR 141.62(b)(16)).
- Includes a special rule requirement that arsenic sampling be reported to the nearest 0.001 mg/L to demonstrate that EPA clearly intended 0.010 mg/L to be used for determining compliance.
- Continues to require systems to sample at every entry point to the distribution system (EPTDS), referred hearafter in this guide simply as “sampling point”).
GROUNDWATER RULE

On November 21, 2006, the EPA published a final Groundwater Rule (GWR) to promote increased protection against microbial pathogens that may be present in PWSs that use groundwater sources for their supply (these systems are known as groundwater systems). This Rule establishes a risk-targeted approach to focus on groundwater systems that are susceptible to fecal contamination, and requires groundwater systems that are at risk of fecal contamination to take corrective action.

The GWR applies to all PWSs that use groundwater sources, in whole or in part (including consecutive systems that receive finished groundwater from another PWS), except for PWSs that combine all of their groundwater with surface water or groundwater under the direct influence of surface water because such systems are already subject to existing regulations.

Major Elements of the GWR
The major four elements of the final GWR are described in the ensuing discussions.

Sanitary Surveys
The GWR requires States to conduct sanitary surveys on groundwater systems. Sanitary surveys must evaluate the following elements, as applicable:

1. Source;
2. Treatment;
3. Distribution system;
4. Finished water storage;
5. Pumps, pump facilities, and controls;
6. Monitoring, reporting, and data verification;
7. System management and operation; and
8. Operator compliance with State requirements.

For CWSs, the initial sanitary surveys must be completed by December 31, 2012, and repeated at least once every 3 years (the GWR allows States to reduce the frequency for CWSs to once every 5 years for systems meeting certain specified performance criteria). For NCWSs, the initial surveys must be completed by December 31, 2014, and repeated at least once every 5 years. If a State identifies significant deficiencies, it notifies the PWS and has the option of requiring corrective action.

Triggered Source Water Monitoring
Source water monitoring is an essential element of the GWR’s approach for identifying those groundwater systems that need corrective action. A groundwater system is subject to “triggered source water monitoring” if it does not already provide treatment to achieve at least 99.99 percent (4-log) inactivation or removal of viruses before, or at, the first customer for each groundwater source, and if it has yielded a total coliform positive sample.

Corrective Action
The GWR specifies the circumstances that require corrective action. If corrective action is triggered by either significant deficiencies found during the State’s sanitary survey or by positive fecal coliform results during source water monitoring by the system, the groundwater system must consult with the State within 30 days of notification or discovery and undertake actions to correct the problem. The groundwater system must complete appropriate corrective actions.
within 120 days after becoming aware of the problem, or be in compliance with a plan and schedule approved by the State. Failure to do so constitutes a Treatment Technique Violation.

The groundwater system must implement one or more of the following corrective action alternatives:

1. Correct all significant deficiencies (e.g., repairs to well pads and sanitary seals, repairs to piping tanks and treatment equipment, control of cross-connections);
2. Provide an alternate source of water (e.g., new well, connection to another PWS);
3. Eliminate the source of contamination (e.g., removal of point sources, relocation of pipelines and waste disposal, redirection of drainage or runoff, improvement or repair of the existing fencing or housing of the wellhead); or
4. Provide treatment that reliably achieves at least 4-log treatment of viruses (using inactivation, removal, or a State-approved combination of 4-log virus inactivation and removal) before or at the first customer for the groundwater source.

Treatment technologies that can provide at least a 4-log treatment of viruses include the following:

- Inactivation, with a sufficient disinfection concentration, and contact time, through disinfection with chlorine, chlorine dioxide, ozone, or through anodic oxidation.
- Removal with membrane technologies with an absolute molecular weight cut-off, or an alternate parameter that describes the exclusion characteristics of the membrane, that can reliably achieve at least a 4-log removal of viruses.
- Inactivation, removal or combination of inactivation and removal through alternative treatment technologies (e.g., ultraviolet (UV) radiation) approved by the State, if the alternative treatment technology, alone or in combination (e.g., UV with filtration, chlorination with filtration) can reliably provide at least 4-log treatment of viruses.

Compliance Monitoring
To demonstrate that treatment is achieving its goals, the groundwater system must monitor the system’s performance. Groundwater systems that use chemical disinfection must monitor for, meet, and maintain a State-determined residual disinfectant concentration. Systems serving more than 3,300 customers must continuously monitor the residual disinfectant concentration. Systems serving 3,300 or fewer customers have the flexibility to use either continuous monitoring or grab sampling. Groundwater systems that use membrane filtration must maintain the integrity of the membrane and operate the membrane system in accordance with State-specified monitoring and compliance requirements. Groundwater systems that use State-approved alternative treatment technology must monitor and operate the alternative treatment in accordance with all compliance requirements that the State determines are necessary to demonstrate that at least 4-log treatment of viruses is achieved.

Reporting and Recordkeeping Requirements
In addition to the major elements described above, the GWR also addresses the types of reporting and recordkeeping required by groundwater systems regulated under the Rule. Some of the reporting requirements must be made by the day following the reportable incident. Other actions must be reported within 30 days. Records must be kept for periods ranging from three to ten years, depending on the type of records.
RADIONUCLIDE RULE

In 2000, EPA revised the radionuclides regulation, which had been in effect since 1977. The revisions required new monitoring provisions to ensure that all customers of community water systems will receive water that meets the Maximum Contaminant Levels for radionuclides in drinking water. EPA also issued a standard for uranium, as required by the 1986 amendments to the Safe Drinking Water Act. The current standards are: combined radium 226/228 of 5 pCi/L; a gross alpha standard for all alphas of 15 pCi/L (not including radon and uranium); a combined standard of 4 mrem/year for beta emitters. The new MCL for uranium is 30 µg/L.

What are the requirements of this final rule?
Community water systems (CWSs), which are water systems that serve at least 15 service connections or 25 residents regularly year round, are required to meet the final MCLs and to meet the requirements for monitoring and reporting.

Non-transient, non-community water systems (NTNCWSs) will not be regulated at this time. EPA will further consider this matter and may propose to regulate radionuclides at these systems in the future. NTNCWSs are public water systems that are not a CWS and serve at least 25 of the same people more than 6 months per year (e.g., schools and nursing homes).

The final rule requires that all new monitoring be conducted at each entry point to the distribution system under a schedule designed to be consistent with the Standardized Monitoring Framework.
OPERATOR CERTIFICATION

Operator certification helps protect human health and the environment by establishing minimum professional standards for the operation and maintenance of PWSs. In 1999, EPA issued operator certification program guidelines specifying minimum standards for certification and recertification of the operators of community and nontransient noncommunity PWSs. While the specific requirements vary from state to state, the goal of all operator certification programs is to ensure that skilled professionals are overseeing the treatment and distribution of safe drinking water. Operator certification is an important step in promoting compliance with the SDWA.

The West Virginia Operator Certification Program was approved by EPA on February 20, 2002. West Virginia requires all public water systems to have a certified operator to effectively operate the system. Certified operators play a crucial role in protecting the health and welfare of West Virginia citizens, which can be jeopardized if persons not properly qualified are allowed to operate water supply systems. There are many disease-causing organisms and chemicals that may enter a system through the source water or through problems in the distribution system. Most contaminants cannot be seen or smelled, so proper system maintenance and monitoring is required to ensure the protection of public health. Water users expect a safe and adequate water supply and rely on the system operator to notify them if problems occur.

The need for responsible water system operators is enormous. Competent water system operations require someone with skill, knowledge and experience in operating, maintaining and troubleshooting water sources, treatment and distribution systems. Even if the operator will not be the one to repair or replace broken equipment, he/she must be able to recognize potential problems and take action to have problems corrected. Any individual making process control/system integrity decisions about water quality or quantity must be certified.

West Virginia’s Operator Certification Program:

- Provides applications and informational resources to prospective operators;
- Administers the examination process;
- Evaluates applicant experience and education;
- Evaluates training for continuing education; and,
- Tracks continuing education obtained by each operator.

To become a certified operator, an individual must:

1. Submit an application;
2. Attend any required training courses;
3. Pass a written examination specific for the size and type of system to be operated; and,
4. Meet minimum experience and education requirements;

Maintaining certification requires:

1. Applying for new renewal by submitting an application every 2 years;
2. Documented attendance at sufficient OEHS-approved continuing education courses (CEHs); and,
3. Continued employment as an operator in a public water system.

Continuing Education Hours
Our understanding of drinking water quality and chemical and biological contaminants in water is changing almost daily. Similarly, better laboratory methods to find small amounts of
chemicals, and improvements in diagnosing and tracking disease, more clearly define water that is truly safe to consume. Along with increased knowledge of health threats, which may be in drinking water, we have also increased our ability to prevent their occurrence, and to detect and remove them. Special sample collection methods, monitoring schedules and treatment options exist for a variety of possible contaminants. All certified operators, as well as system owners and managers, have a responsibility to keep up with changes in monitoring and reporting requirements. Also, it is important you are aware of new information on water quality and treatment and they maintain a basic level of knowledge.

West Virginia requires all certified operators, except 1Ds, to obtain **continuing education hours (CEHs)**. Continuing education is essential to keeping up to date with water supply, treatment, maintenance, and monitoring information. The amount of continuing education that must be obtained depends on your certification classification.

- **Operators-in-Training (OITs) and Water Distribution (WD) operators** are required to obtain 6 CEHs every 2 years.
- **Class I operators** are required to obtain 12 CEHs every 2 years.
- **Classes II-IV** are required to obtain 24 CEHs every 2 years.

Operators are required to notify the OEHS in the event they are no longer the operator for a specific system. This is to emphasize the importance of having a certified operator at all times. A 30 day notice is required for voluntary terminations. Please complete and submit form ES-74 at least 30 days prior to quitting to stay in compliance with operator requirements and keep your certification. If you are fired, contact Certification & Training so they are aware your employment status has changed and provided them with your new or anticipated employment information.

Certification is personal. Each individual operator is responsible for keeping his/her certification current and ensuring all requirements are met. Please contact the Certification and Training Section at (304) 558-2981 or WVRWA at (304) 201-1689 if you have any questions concerning your responsibilities as a certified public water system operator. The Certification and Training Section currently oversees information on more than 2,300 certified water operators (as of May 2007) in addition to wastewater operators, backflow prevention & assembly inspector testers, water well drillers, and monitoring well driller training in West Virginia. It is essential we work together and openly communicate.

Responsibilities of the Public Water System and OEHS

The public water system owner and operator, along with OEHS, work together to make sure that safe drinking water is provided to water system users and that all regulatory requirements are met. Providing safe drinking water requires a team effort from systems, operators, and OEHS.

Responsibilities of the Owner and Operator

The owner of a public water system is responsible for meeting all of the legal requirements that apply to the water supply. An operator is a person who conducts day-to-day operational and technical activities related to the operation of a water supply. Although the owner may designate an operator, the owner is ultimately responsible for providing safe drinking water and meeting regulatory requirements. It is important that both the owner and operator work together to ensure
that the water system provides safe drinking water and meets all applicable requirements. **The ultimate goal for both the owner and operator is to provide safe drinking water to the public.**

The owners of public water systems shall:

- Employ a Chief Operator with a certification equal to or higher than the system classification and an adequate number of certified operators to operate the system;
- Not employ more OITs than the number of employed certified operators, unless written permission is granted by the Commissioner;
- Apply to the Commissioner for OIT Certification, on behalf of OIT applicants, within thirty (30) days of their hire at the public water system. Experience gained for certification starts only upon the issued date of the OIT certificate;
- Notify the Commissioner within ten (10) days, in a manner and form approved by the Commissioner, of any employment status changes, except termination, of the system’s certified operators, OITs, and intended certified operators and OITs, including their reassignment;
- Notify the Commissioner within twenty-four (24) hours if a certified operator or OIT terminates employment for any reason;
- Renew the OIT Certification every two (2) years or until all requirements for Class I certification are met. Submit the renewal application at least thirty (30) days prior to expiration date, in a manner and form approved by the Commissioner. The OIT shall attempt to pass the Class I or WD examination at least once during each two (2) year renewal;
- Require in the case of Class II, III, and IV public water systems, that a certified operator with certification equal to or greater than the system classification, be present at all times when the plant is operational, unless the Commissioner grants a written exception to this requirement in response to a written request by the owner of the public water system.
- Require in the case of Class III and IV public water systems, that a certified operator with certification no lower than one (1) class below the system classification, be present at all times when the plant is operational.
- Submit a personnel status report by July 15 every year. The report is to be in a manner and form approved by the Commissioner and required information includes, at a minimum: a list of all certified operators, the operator in charge of each shift (if applicable), the Chief Operator, and any OIT’s currently employed; and,
- Post a copy of the current certification of all certified operators employed at the public water system and a copy of the certified operators’ renewal card, if applicable, in a conspicuous location in the water treatment plant, or, if there is no water treatment plant, the office of the public water system.

Operator’s Responsibilities

An operator is the person who is, in whole or part, responsible for the operation of a water system. At times, he/she may be a manager, laboratory technician, mechanic, meter reader, and a public relations specialist. To become a competent operator one must have a strong interest and desire for the job. Becoming a competent operator means; being accountable, having the will to learn, and to work without supervision. Even though many aspects of a water system can be "out of sight", they should not be “out of mind” for the water treatment plant operator. By
properly maintaining the system, a competent operator provides a large degree of protection for a community’s great investment in infrastructure. The operator also protects the health and well being of customers by producing a safe finished product.

A certified operator shall:

- Notify the Commissioner at least thirty (30) days prior to voluntarily terminating employment with a public water system in a manner and form approved by the Commissioner (EW-74);
- Obtain the necessary amount of CEHs and retain documentation of attendance required for his or her renewal application;
- Ensure that the renewal applications are submitted at least thirty (30) days before the required date and no earlier than sixty (60) days prior to expiration, in a manner and form approved by the Commissioner;
- Have the original personal certification card issued by the Commissioner upon his or her person at all times the operator is operating the public water system; and,
- Not work in a public water system under the certification of another; only the person whose name appears on the operator certification is certified by that document.
Title 64 Legislative Rule Bureau for Public Health Series 4 Public Water Systems Operators (64CSR4) governs the examination and certification of operators of public water systems. OEHS regularly reviews and revises this rule to ensure compliance with federal rule and clear, consistent statewide application. 64CSR04 was revised in 2007 and 2002, with the current version effective since May 2, 2012.

OEHS recognizes the importance of professionals in the drinking water industry and looks forward to working with each and every individual operator and system to successfully implement any new requirements on a reasonable timeframe. Please read the current version of 64CSR04 entirely. You can contact our office at 304-558-2981 to discuss these rules or if you would like a copy visit the WV Secretary of State website at http://apps.sos.wv.gov/adlaw/csr/ruleview.aspx?document=2606 Periodic rule review and revision enables West Virginia to retain primary enforcement for the Safe Drinking Water Act. Without the PWS operator regulations administered by the operator certification program, one of the important barriers to preventing contamination of PWS’ has been compromised.
CHIEF OPERATOR REQUIREMENTS & RESPONSIBILITIES

The recently revised 64CSR4 includes the following definition for chief operator that is more descriptive of responsibility:

The certified operator whom the owner designates who is responsible for managing the daily operational activities of an entire PWS or a water treatment facility, or a distribution system in a manner that ensures meeting state and federal safe drinking water rules and regulations.

Every PWS owner must employ a chief operator with certification equal to or higher than the system classification. Therefore, all PWS', excluding 1D systems and systems with only 1 certified operator, must designate a chief operator. A certified operator in a system with 1 certified operator is automatically designated as the chief operator. Class 1D systems are exempt from the requirements of this subsection.

To better support and prepare chief operators for their great responsibilities, the new regulation requires:

All new and current chief operators attend a course approved by OEHS for training as a chief operator.

Attendance of the designated course is also applicable for 6 hours of CEH credit for the renewal cycle. Current chief operators must fulfill this training requirement by April, 18, 2009. New chief operators are required to take the next available class unless waived in writing. OEHS will develop a list of approved courses and make arrangements for additional course offerings.

A certified chief operator is responsible for the day to day operation of the PWS to ensure the delivery of safe water at all times by complying with all state and federal regulations. The way this is accomplished is by the completing the following tasks. These tasks may vary depending on the size of your system, the type of water source and the complexity of treatment.

- Attend training to meet state primacy agency's continuing education requirements;
- Attend training programs and workshops to keep current of technical improvements;
- Be aware of all changes in regulations regarding water treatment;
- Be available to accompany regulatory officials for on-site inspections when given adequate notice;
- Collect or oversee the collection of water samples as specified by OEHS;
- Communicate with the owner, manager, or board about technical and financial needs of your system;
- Conduct frequent system and security inspections;
- Develop and maintain a plan for monitoring system process controls and meet all related goals;
- Educate other staff on emergency procedures and keep contact information up to date;
- Ensure that all samples are tested by a WVBPH certified lab;
- Ensure that all treatment equipment is maintained and operated properly according to the manufacturers’ specifications and recommendations;
- Ensure that daily chemical analyses are properly measured and recorded;
- Ensure that OEHS approval has been obtained prior to starting treatment or changing chemical types and/or manufacturers;
- Inspect critical facilities and components, including door locks and fencing, as part of daily inspections;
- Inspect, flush, clean and disinfect the water distribution system as needed per OEHS regulations;
- Investigate water quality and quantity problems and take corrective measures as needed in a timely manner;
- Keep accurate operational records;
- Keep accurate records of repairs and routine maintenance performed on the treatment equipment;
- Keep accurate records of water analyses, repairs, maintenance and correspondence;
- Make all chemical adjustments and add all chemicals when necessary;
- Measure and record all chemical dosage rates as needed;
- Maintain a consumer complaint log, including how complaints are resolved;
- Oversee and monitor all repairs performed on the public water system;
- Review all water quality analyses for completeness prior to submission to OEHS;
- Report all violations to OEHS and issue public notices when needed;
- Update system maps when a significant change to the distribution system has been made; and,
- Utilize appropriate safety equipment.

Chief operators are also responsible for training of any Operators-in-Training (OITs) at their system. The Chief Operator must review and sign the OIT application (EW-102E) within 30 days of new employee hire as well as document in writing when the OIT has sufficient work experience to upgrade to a WD or Class I operator. Certified experience is the only experience counted towards upgrade so it is important to ensure all operators or individuals employed by the system conducting operator duties are currently certified. PWSs may not employ more OITs than the number of currently employed certified operators, unless written permission is granted by OEHS.
NEW RENEWAL AND CERTIFICATION REQUIREMENTS

All operator certifications require renewal every 2 years. Federal guidelines require continuing education for all certified operators. The regulations require all certified operators (except 1D) continue to receive training related to water treatment and distribution to promote continued learning and professionalism, more efficient operation, and a better understanding of emerging technologies and trends.

OIT minimum education requirements can be waived by the Commissioner, in writing, to a minimum age of 16 and completion of the 10th grade with a current school transcript and 2.0/4.0 grade point average. The intent of this is to allow interested students to receive water treatment related training earlier in their academic career paths and help promote awareness of the water treatment field.

Class I operators must obtain 12 hours of continuing education hours, and Class II through IV must obtain 24 hours of continuing education hours for renewal.

The regulations also clarify that it is the duty of each certified operator to obtain the necessary amount of appropriate CEHs and retain documentation of attendance required for the renewal application. All certified operators must now ensure renewal applications are submitted no earlier than 60 days prior to expiration, in addition to the previous requirements, to facilitate proper data management and timely processing.

All continuing education units (CEUs) must be preapproved by the Commissioner for relevancy so that the applicant knows beforehand the courses are enough, or if additional course work will be needed. 100% credit will be awarded to CEUs deemed directly related to water treatment and distribution otherwise 50% credit will be awarded.
WATER DISTRIBUTION CERTIFICATION

US Environmental Protection Agency (EPA) guidelines require all PWS operating personnel making process control/system integrity decisions about water quality or quantity that affect public health be done under the direction of a qualified, certified operator. This potential exists in both the treatment facility and distribution system. Therefore, a Water Distribution (WD) operator certification was added in 2007.

Some water utilities also have “split” responsibilities, where the water treatment plant may be under the direction of a certified PWS operator but the distribution system is not. This is no longer allowable under 64CSR04. The WD certification will allow two “chief operators” to be assigned under the above scenario and still meet the federal guidelines. Although a WD system is defined as a PWS that obtains all of its water from another PWS (also known as a purchase system), and is not owned or operated by the supplying PWS, an individual working in the distribution portion of any PWS must hold a WD or higher certification to ensure properly certified operator coverage.

Since WD operators collect water quality samples at the distribution system but not provide any treatment, much of the current Class I (and higher) operator certification training is not needed for distribution only systems or related work. Development of a WD training course and exam where only distribution activities are taught and tested, will eliminate the problem of a person having to study unneeded and unnecessary material in order to proficiently perform their job functions.

WD certification requires:
- 18 years of age
- High school diploma or GED
- Commissioner-approved WD course
- 1,000 hours (~6 months full-time) certified experience at a WD or higher PWS documented
- EW-102 for exam
- 70 or better on WD exam
- Form EW-211 for certification

All of the requirements for WD operator certification are based on current EPA guidelines related to operator education, examination, experience, and continued training. Any operator collecting samples at a WD or higher system must hold a 1D or higher certification. This provision was added to give existing WD operators a chance to upgrade without going through the Operator-in-Training (OIT) process.

A Class I-IV certified operator may choose to be WD certified in addition to their higher classifications, however, it is not required. If both certifications are held, the requirements for the highest must be met. The Water Distribution Operator Certification Course is approved for 23 CEHs (CEH2008-052) so it may be taken for continued learning purposes instead certification if the individual chooses.
OPERATOR FORMS

Remember all forms must be complete, legible, signed and dated, and timely with all required documents attached (copy of diploma, CEH certificates, etc.) for processing. Also remember to use the most current version of each form. All forms are available on the OEHS website at http://www.wvdhhr.org/oehs/eed/swap/training&certification/forms.asp or by phone request from the Certification and Training Program at (304) 356-4335.

- EW-102 Request for Water or Wastewater Operator Certification Exam
- EW-211 Request for Water Operator Certification
- EW-212 Request for Water or Wastewater Operator Certification Renewal
- EW-104 Personnel Status Report
- EW-74 Water or Wastewater Operator Resignation Notice
- EW-126 Request for Certification Reinstatement
- EW-108 Request for Water or Wastewater Operator Certification from Another Jurisdiction
- EW-76 Request to be Included on the West Virginia’s Contract Operator List
- EW-75 Request for Backflow Prevention Assembly Inspector/Tester (BPAIT) Certification
- EW-78 Operator Continuing Education Hour (CEH) Application
PUBLIC WATER SYSTEM OWNER REQUIREMENTS

PWS owners must notify the OEHS:

- within 10 days of any employment status changes (previous version required this information within 5 days);
- within 24 hours if any operator terminates employment for any reason; and,
- by July 15th every year with a personnel status report on an approved form which includes a list of all certified operators, the operator in charge of each shift (if applicable), the Chief Operator, and any OITs currently employed.

These more specific reporting requirements will increase enforceability and enable the OEHS to have more current information. Previously, employment status changes were often discovered during site visits but not necessarily soon after changes occurred.

Additional owner requirements in the new regulation include applying for and renewing OIT certification on behalf of OIT applicants and operators, and posting a copy of the certified operators’ renewal card, in addition to the current certification, in a conspicuous location at the system. Although this has been OEHS policy, it was not written previously in the regulation.
The classification of PWS is determined by a descriptive definition based on source, population served, and treatment requirements. In general, the system complexity will continue to determine the required operator classification. All PWS classifications are reviewed as part of the sanitary survey conducted by District Office staff. This timeframe enables existing staff to reevaluate each system. Exceptions to this schedule will be made if requested in writing or if other problems arise. If reclassification occurs, systems must communicate with OEHS to ensure proper operator coverage. OEHS recommends operators at systems likely to change to start training and working towards the appropriate classification.

Class 1D
A transient non-community PWS that has groundwater only as a source, and does not use gaseous chlorine or chlorine dioxide as a means of disinfection, and does not treat for the removal of nitrate or nitrite, or both. A groundwater source that uses gaseous chlorine, chlorine dioxide as a means of disinfection or has treatment for removal of nitrate or nitrite, or both is at least a Class I PWS.

Water Distribution (WDS)
A PWS that obtains all of its water from another PWS, and is not owned or operated by the supplying PWS. A WDS does not have any other source of water other than water from the supplying PWS. A WDS may apply chlorine for supplemental disinfection but otherwise does not treat its water. A WDS that retreats with anything other than chlorine is at least a Class I PWS.

Class R:
A non-transient PWS that retreats at the point of entry with anything other than chlorine another PWSs finished water for facility use and consumption only. A Class R that provides water to another PWS is at least a Class I PWS.

Class I
A community or non-transient non-community PWS with a GW source that serves a population of less than ten thousand (10,000), including consecutive connection population and does not treat for an identified primary contaminant. A transient non-community PWS that has a groundwater source that uses gaseous chlorine, chlorine dioxide as a means of disinfection or has treatment for removal of nitrate or nitrite, or both.

Class II
A community or non-transient non-community PWS with:
- A GW source that serves a population of less than ten thousand (10,000), including consecutive connections, and either treats for an identified primary contaminant, or has a treatment technique as identified in 40CFR141.73;
- A GW source that serves a population of at least ten thousand (10,000), including consecutive connections that does not treat for an identified primary contaminant; or,
- A GUDI or SW source that serves a population of less than ten thousand (10,000), including consecutive connections.

Class III
A community or non-transient non-community PWS with:
- A GW source that serves a population of greater than ten thousand (10,000), including consecutive connections, and either treats for an identified primary contaminant, or has a treatment technique as identified in 40CFR141.73; or,

- A GUDI or SW source that serves a population of at least ten thousand (10,000), but less than twenty thousand (20,000), including consecutive connections.

Class IV
A community or non-transient non-community PWS with a GUDI or SW source that serves a population of at least twenty thousand (20,000), including consecutive connection population, and has treatment.
OPERATOR CERTIFICATION CHECKLIST

Since certified operators are a key component of any water system, it is important to understand what all goes into becoming a certified water operator. The Certification and Training Program is commonly asked how quickly an individual can become a certified water operator. The summary below was comprised to address this good question in writing. Feel free to use it as a checklist in the future.

Class R Water Operator:
- 18 years old
- High school diploma or GED
- Commissioner approved Class R course
- Form EW-102 for exam
- 70 or better on Class R exam
- Form EW-211 for certification
- Renewal every 2 years with proof of 1 CEH using form EW-212 30-60 days prior to expiration

1D Water Operator:
- 18 years old
- Commissioner-approved 1D course
- Form EW-102 for exam
- 70 or better on 1D exam
- Form EW-211 for certification
- Renewal every 2 years using form EW-212 30-60 days prior to expiration

Operator-in-Training (OIT):
- 18 years old
 - May be waived upon written request to 16 with at least 2.0 GPA & 10th grade complete
 - High school diploma or GED.
 - May be waived upon written request to at least a 2.0 GPA & 10th grade complete OR enrolled in Adult Learning Program actively pursuing GED
- Form EW-211
- Renewal every 2 years with proof of 6 CEHs using form EW-212 30-60 days prior to expiration

Water Distribution (WDS) Operator:
- 18 years old
- High school diploma or GED
- Commissioner-approved WDS course
- 1,000 hours (~6 months full-time) certified experience at a WDS or higher PWS documented
- EW-102 for exam
- 70 or better on WDS exam
- Form EW-211 for certification
- Renewal every 2 years with proof of 6 CEHs using form EW-212 30-60 days prior to expiration
Class I Water Operator:
- 18 years old
- High school diploma or GED
- Commissioner-approved Class I course
- 2,000 hours (~1 year full-time) certified experience at a PWS documented. Experience from 1D, WDS, or predominantly in maintenance and other non-operational or treatment duties shall not count for more than 600 hours.
- Form EW-102 for exam
- 70 or better on Class I exam
- Form EW-211 for certification
- Renewal every 2 years with proof of 12 CEHs using form EW-212 30-60 days prior to expiration

Class II Water Operator:
- 18 years old
- High school diploma or GED
- Commissioner-approved Class II course
- 4,000 hours (~2 years full-time) certified experience at a PWS with 2,000 of those at a Class II or higher PWS documented. Experience from 1D, WDS, or predominantly in maintenance and other non-operational or treatment duties shall not count for more than 600 hours.
 - May substitute Class II or higher PWS experience with Commissioner approved course (Sacramento Courses Volumes I&II)
 - May substitute maximum of 1 year experience with 45 CEUs upon written request
- Form EW-102 for exam
- 70 or better on Class II exam
- Form EW-211 for certification
- Renewal every 2 years with proof of 24 CEHs using form EW-212 30-60 days prior to expiration

Class III Water Operator:
- 18 years old
- High school diploma or GED
- 90 CEUs
 - May substitute maximum 45 CEUs with additional 1 year experience
- 8,000 hours (~4 years full-time) certified experience at a PWS with 2,000 of those at a Class II or higher PWS documented. Experience from 1D, WDS, or predominantly in maintenance and other non-operational or treatment duties shall not count for more than 600 hours.
 - May substitute maximum of 2 years experience with additional 90 CEUs upon written request
- Form EW-102 for exam
- 70 or better on Class III exam
- Form EW-211 for certification
- Renewal every 2 years with proof of 24 CEHs using form EW-212 30-60 days prior to expiration
Class IV Water Operator:
- 18 years old
- High school diploma or GED
- 70 or better on Class IV exam
- 180 CEUs
 - May substitute maximum 90 CEUs with additional 2 years experience
- 10,000 hours (~5 years full-time) certified experience (3.18) at a PWS with 2,000 of those at a Class III or higher PWS documented. Experience from 1D, WDS, or predominantly in maintenance and other non-operational or treatment duties shall not count for more than 600 hours.
 - May substitute maximum 2.5 years experience with additional 135 CEUs upon written request
- Form EW-102 for exam
- 70 or better on Class IV exam
- Form EW-211 for certification
- Renewal every 2 years with proof of 24 CEHs using form EW-212 30-60 days prior to expiration

NOTE: A CEU is 10 CEHs or any higher education approved by OEHS. C&T reviews each course for relevancy and assigns CEUs on a case-by-case basis. The rules specify courses relevant to water treatment will count 100% towards CEUs. However, a course not directly related will receive 50% credit towards CEUs. Thus, a 3 credit hour Music Appreciation course taken at WVU will only be granted 1.5 CEUs. Also, keep in mind you cannot use your education for both minimum education requirements and experience substitution. Therefore, a person with a 4-year degree would be well advised to consider NOT using their degree for experience substitution if they plan to eventually become a Class III or IV operator.

Keep in mind, all operator certification requirements are based on federal and state regulations to ultimately protect public health. Each certified PWS operator is responsible in providing adequate supply of safe, potable drinking water to consumers who are confident their water is safe to drink. It is essential these operators not only achieve these minimum requirements for certification but continue to gain knowledge and acknowledge the public health foundation of their career choice in the drinking water industry. Please contact the Certification and Training Program at any time to discuss any aspect of the operator certification program at 304-558-2981.
GUIDANCE FOR CERTIFIED WATER OPERATORS

OEHS Certification and Training (C&T) Program staff takes pride in reviewing and processing each operator application based on quality, timeliness, and fulfillment of all current certification regulation requirements. However, if applications are incomplete or required information is not submitted or is illegible, our job is more difficult and timeliness of your certification is reduced. By adhering to the following guidelines, initial certification or renewal will proceed more effectively.

1. Know the rules and regulations for your profession and how to receive and maintain your certification(s). This includes knowledge of education and experience requirements and associated timelines. West Virginia Administrative Rules, Title 64 Series 4, Public Water Systems Operator Regulations are available online from the Secretary of State website at http://www.wvsos.com/csr/verify.asp?TitleSeries=64-04. If you have any questions on these regulations, contact C&T for clarification.

2. Know the proper forms required to initially become certified and renew your certification (if required). Knowing what forms to use and having them available in your work area will facilitate meeting the required timelines. All current forms are available on our website at www.wvdhhr.org/oehs/eed/swap/training&certification/forms.asp or by calling us at (304) 558-6988 or (304) 558-6991. Always read carefully and complete the forms in their entirety, which includes a signature and date for proper documentation.

3. Make sure any classes you take toward certification upgrade or renewal are already approved by OEHS. All classes must be approved by the Commissioner and attendance documented by the operator before OEHS will accept the continuing education hours (CEHs) for operator renewal requirements. A list of approved classes is available on our website at www.wvdhhr.org/oehs/eed/i&cd/education_index.asp or by calling C&T at (304) 558-6988. All approved CEHs have a unique, 7-digit CEH number. Taking unapproved classes and failing to provide class certificates upon completion may result in the need for you to take additional classes and delay processing your application. Contact the instructor or their supervisor if you have not received appropriate certificates with the corresponding approved CEH number and course title for all of your training.

4. Do not procrastinate on taking classes for renewal. Hundreds of classes have been approved, some indefinitely. By waiting until the last few months before your renewal, you increase the chance of the class being full, cancelled, possible sickness on your part, having to stay at work due to problems, etc. There are two (2) years in between certification renewals for water plant operators and three (3) years between certification renewals for Class III and IV wastewater operators. Requesting extensions for more time to obtain required continuing education is unacceptable and indicates poor career management on your part.

5. Share good information. The articles you are reading often contain valuable information. Please ensure it is reviewed by staff and coworkers.

In Short:
1. Know the rules and regulations for your profession.
2. Use the correct form(s) and make sure they are complete and timely.
3. Take approved CEH classes and contact the instructor(s) for appropriate certificates.
4. Do not procrastinate on obtaining your renewal training.
5. Information is out there for all of you, take advantage of it and manage your careers appropriately.

By following the above guidance, C&T can provide timely certifications and renewals for everyone. Please contact us with any questions or concerns at any time. We oversee approximately 4,000 individual certifications, which are each unique, personal, and very important. Open communication is essential in facilitating all operator certification needs and ultimately protecting drinking water.
WAIVERS AND VARIANCES

Operator waivers and system variances, or in other words exceptions to the certified operator requirements, do exist. However, they are the exception, not the norm, and have strict guidelines.

Upon first glance, sections 5.1.g and h of 64CSR4 sound contradicting and may need revised for clarity in the next version. In general, 5.1.h limits the exceptions granted under 5.1.g. The intent of the current rule is:

- All Class II PWSs must have a Class II operator or higher present at all times plant operational, unless a written exception is made by OEHS based on a written request received.

- All Class III PWSs must have a Class III operator or higher present at all times plant operational, unless a written exception is made by OEHS based on a written request received.

- A written exception may be granted by OEHS for a Class II operator to be present at all times plant is operational at a Class III system based on written request received. A class I operator alone cannot provide adequate operator coverage at a Class III PWSs.

- All Class IV PWSs must have a Class IV operator present at all times plant operational, unless a written exception is made based on a written request received.

- Written exceptions at Class IV PWSs are limited to Class III operators. A Class I or II operator alone cannot provide adequate operator coverage at Class IV PWSs.

OEHS’s decision to issue an operator waiver has several steps. First, a written request from the system explaining the situation(s) creating a need for the waiver is received by OEHS Certification and Training Program or district office. PWS must document effort(s) made on their part to address the situation. For example, the vacancy was posted and no qualified candidates applied or an emergency occurred involving one of our certified operators. A waiver should be a last resort, not a safety net for poor planning and management. Once the written request is received, OEHS will seek recommendation from the appropriate district office engineer. Generally, they will state whether or not the system is in need, and if the proposed operator can adequately performs the required functions. OEHS will also make sure the requesting PWS chief operator recommends approval of the waiver request, if it did not originate from he or she. The written request will then receive a written response from the OEHS EED Director with specifics on the decision and with copies provided to all involved individuals. Operator waivers are situation, operator, system, and time specific to ensure consistency in implementation of regulations.

There are also PWS operator variances. The Environmental Health Procedures DW-36 outlines Operator Variance Permits (OVP) for qualifying and OEHS approved PWSs who automate their systems (automatic dialers and automatic equipment shut down). In general, an OVP requires: a minimum one (1) year continuous operation before we would consider issuing and a PWS classification level of Class II or higher. These types of PWS variances are handled by OEHS IC&D.
Even with any waivers or variances, all PWSs still must have a Chief Operator with certification equal to or greater than the PWS classification **and adequate number of certified operators to operate the system** (to comply with 5.1.b,g&h).
PUBLIC WATER SYSTEMS IN WEST VIRGINIA

The jurisdiction of the drinking water program at the OEHS applies only to PWSs, those that service water to the public. This includes municipal water systems as well as facilities, such as mobile home parks or factories, that have their own source of water and that serve it to the public. Whether the system is privately owned or not, if it serves water to more than 25 people, it is considered a PWS and subject to the regulations of the SDWA.

West Virginia has over 1,100 active PWSs. This number constantly changes and varies year to year. Approximately 90% of all PWSs use groundwater, while only 10% use a surface water or groundwater under the direct influence of surface water source. However, this low number of surface water source PWSs serve large population centers such as the cities of Charleston, Morgantown, Huntington, and Clarksburg.

Water System Types

Public Water Systems (PWS) provide piped water for human consumption to 15 or more service connections or an average of at least 25 individuals each day for at least 60 days each year. The system includes the source water intake (such as a well), treatment, storage, and distribution piping. Human consumption of water includes drinking water and water used for cooking, food preparation, hand washing, bathrooms and bathing. A private home served by its own well is not a public water supply system since it serves only a single service outlet.

There are three categories of PWSs: Community Water System (CWS); Non Transient Non Community Water System (NTNCWS; and, Transient Non Community Water System (TNCWS). A Community Water System (CWS) is defined as a public water system which serves at least 15 service connections used by year-round residents or it regularly serves at least 25 year-round residents. A public system that is not a community water system is a Non-Community Water System (NCWS).

There are two types of non-community water systems, Non-Community Non-Transient Systems (NTNCWS) and (TNCWS) Transient Non-Community Water Systems.

Non-Community Non-Transient Water Systems (NTNCWS) are non-community public water systems that regularly serve at least 25 of the same people over 6 months of the year. Schools with their own groundwater supply are a good example of this type of system.

Transient Non-Community Water Systems (TWS) do not serve at least 25 of the same people on a regular basis over a 6 month period in a year. This category covers bars, restaurants, rest stops and campgrounds, to name a few.

PWSs are further classified into 6 distinct categories (1D, WD, or Class I, II, III or IV) to ensure each is regulated according to its population served, source water, and treatment complexity.

Purpose of Public Water Systems

The main purpose of PWSs is to provide water safe for human consumption. Other important purposes are to provide an adequate quantity of water of acceptable taste, odor and appearance; and meet the needs of fire protection. Providing water service places owners and operators of water systems under an ethical and legal obligation to meet these needs.
Most people in the U.S. take safe, inexpensive drinking water for granted. We assume all water that comes from a tap is okay to drink, whether in a restroom, a gas station or a friend's home. Few of us realize the planning, monitoring, repair and maintenance required to obtain and protect adequate amounts of safe water.

Acute and Chronic Health Effects
These requirements are meant to protect the public from contaminants that may cause acute or chronic health effects.

Contaminants that may have an immediate impact on health after drinking small amounts of water must be dealt with in all public water systems. These are contaminants that cause acute health effects. Examples are disease-causing organisms and nitrates.

Contaminants that cause health effects if consumed over long periods of time must be dealt with in systems where the same residential or non-residential consumers have access to the water on a long-term basis. These are contaminants that cause chronic health effects. Examples include cancer-causing chemicals and chemicals affecting the nervous system or kidneys.

Responsibilities of Public Water Systems
Today with increasing regulatory requirements brought about with the 1996 Amendments to the SDWA, public water systems in West Virginia are finding themselves facing many challenges. Along with the increasing responsibilities in the area of treatment and compliance, there is also the issue of source water protection. Achieving and maintaining financial, technical, and managerial capacity is critical for public water systems. Capacity Development is a concept stated in the 1996 SDWA Amendments that pertains to the successful management and operation of a public water system. This concept illustrates the overlapping influence that each of these areas has upon the other. Capacity Development further implies that there is no static endpoint to success. That is, water systems must strive daily to do the best possible job in technical, financial, and managerial endeavors.

Given the increasing regulatory requirements and scarcity of resources that often exist with small systems, it is more important than ever to make certain that individuals directing and operating these systems have a thorough understanding of their system's operation. The basic responsibility of a water system is to furnish customers with potable drinking water that meets or exceeds customer demands. This responsibility is shared by every member of the utility’s work force, from managers to operators and from clerical staff to field employees. Every member of the team should be aware of their duties and report any condition to the next in command that has the potential to adversely effect the system’s ability to produce safe clean drinking water.
MULTIPLE-BARRIER APPROACH

Whether your tap water comes from surface or groundwater, all drinking water sources are vulnerable to a variety of contaminants from a variety of activities. The origin of contaminants might be in your neighborhood or many miles away. When rain falls or snow melts, it picks up and carries away pollutants, depositing them into lakes, rivers, wetlands, coastal and even underground sources of drinking water. Because we know these activities have the potential to contaminate the source of our drinking water, we have created four major barriers to protect our source water from contamination. Preventing pollution is critical to protecting drinking water from contamination and reducing the need for costly treatment. Community involvement and individual action are key to providing a safe supply of drinking water.

The Multiple-Barrier Approach of public health protection incorporates several independent steps to provide public health protection. The theory behind this concept is the more barriers between a contaminant and the consumer, the more likely an isolated failure in one of the steps will not result in adverse public health effects. For a public water system using groundwater, steps in the multiple-barrier approach include the following:

- Selection of the best source or source location;
- Development and implementation of a source water protection plan;
- Providing adequate treatment to remove or eliminate contaminants;
- Monitoring water quality to check the effectiveness of treatment or the occurrence of contaminants (there are also often multiple barriers within treatment processes);
- Providing sanitary surveys to identify deficiencies which might impact water quality or service; and
- Reporting to the public any contamination events, monitoring failures, or water treatment deficiencies.

Proper design and construction of a public water supply system has a critical role in public health protection. It is also an expensive process regardless of the size of the system. Investment dollars are protected if the system is engineered, constructed, operated and managed so that it is able to provide safe water for as long as possible. Monitoring water quality indicates if part of the system has failed, is leaking or is exposed to conditions which may shorten its useful life. Conditions which may affect the life of pipe include very hard water which might plug pipes, or corrosive water which “eats away” at the interior of pipes and tanks.
The Water Cycle
The Earth's water is always in movement, and the water cycle, also known as the hydrologic cycle, describes the continuous movement of water on, above, and below the surface of the Earth. Since the water cycle is truly a "cycle," there is no beginning or end. Water is not gained or lost. This means all the water we have now is all we’ve ever had, and all we’re ever going to have. When we look at all the water on earth, most of it (~97%) is in oceans and salty. Icecaps and glaciers make up 2% of earth’s water supply. Therefore, there is only 1% or less fresh water available on the surface and in the ground to use.

Water changes states among liquid, vapor, and solid at various places in the water cycle continuously. A drop of water:
- Evaporates as water vapor from the heat of the sun or other sources
- Condenses in the atmosphere
- Falls to the earth in the form of precipitation
- Leaches or infiltrates into the ground entering aquifers
- Recharges surface water
- Evaporates again beginning the cycle all over

As rain and snow fall to the earth, some of the water runs off the surface into lakes, rivers, streams and the oceans; some evaporates; and some is absorbed by plant roots. The rest of the water soaks through the ground’s surface and moves downward through the unsaturated zone, where the open spaces in rocks and soil are filled with a mixture of air and water, until it reaches the water table. The water table is the top of the saturated zone, or the area in which all interconnected spaces in rocks, and soil are filled with water. The water in the saturated zone is called groundwater. In areas where the water table occurs at the ground’s surface, the groundwater discharges into marshes, lakes, springs, or streams and evaporates into the atmosphere to form clouds, eventually falling back to earth again as precipitation.

Illustration courtesy of the U.S. Geological Survey
The source of drinking water refers to where it comes from. There are three main sources of drinking water: surface water, groundwater, and “groundwater under the influence” of surface water. Surface water supplies about 75% of the water consumed by people in the U.S. Even though a larger number of water systems in the U.S. use a groundwater source, on the average, they are smaller and serve fewer people. Surface water is a more likely source for large cities. Usually, the source of water will determine the type of treatment necessary. Impurities can be found in any natural water source. Surface water can pick up impurities, including chemical and biological contaminants, as it comes in contact with soil, rock, and vegetation. The dissolution of minerals from the soil and rock is very common for groundwater.

Groundwater is characterized by higher concentrations of dissolved solids, minerals, hardness, dissolved gases, lower levels of color, relatively high hardness, and freedom from microbial contamination. Groundwater may also have taste and odor problems that are usually caused by hydrogen sulfide gas and minerals like iron.

Groundwater under the influence of surface water is typically characterized by low turbidity (but higher than typical groundwater), pathogens, and typical groundwater characteristics such as hardness and iron/manganese. Therefore GWUDI treatment technologies are aimed at microbial removal from low turbidity waters.

Surface waters will generally have more bacteria and turbidity present than groundwater. Taste and odor problems are usually greater in surface water due to algae, bacteria, and fungi that are present in the water.

Surface water and groundwater-under-the-influence quality issues are turbidity, taste, odor, and color. Surface water and “groundwater under the influence” usually require chemical treatment and filtration.

EPA has established MCLs for impurities that must be removed from or inactivated in raw water before the water can be classified as potable. The contaminants can be removed or inactivated naturally or by treatment. For groundwater, many of the particles and microorganisms originally found in surface water are removed as it seeps into the ground and through the aquifer, due to the natural filtration effect as water passes through soils, and the potentially long travel times in the aquifer. Surface waters are very different from groundwater. Surface waters require a high degree of treatment to remove impurities and contaminants from natural and man-made sources. Some impurities in the water, such as large suspended solids, are easily removed. Smaller particles, including many pathogens, are more difficult to remove. Some pathogens, such as *Giardia* and *Cryptosporidium*, also resist inactivation by chlorine.
GROUNDWATER

Groundwater occurs when water percolates down to a water table through the void spaces. Water in aquifers obtained from wells or springs is called groundwater. Due to this natural filtering action, much of the material responsible for turbidity in surface waters is removed. This filtration and the tremendous retention time in the aquifer provide for the removal of many of the bacteria in groundwater and is generally less susceptible to contamination than surface water. Groundwater’s susceptibility to contamination depends on the type and thickness of soil and rock layers, depth to the groundwater, and the type of contaminants. Some soils are very good at filtering out contaminants. Others are not. The central sands area and karst features are very susceptible to groundwater contamination. In contrast, areas with thick, rich soil and a good depth to groundwater are generally less susceptible to contamination. In some areas, groundwater may become contaminated with naturally occurring minerals in the soil and rock such as arsenic, lead, radium, radon gas and uranium. Groundwater systems generally have less restrictive monitoring and treatment requirements than surface water systems.

Water will continue to percolate down through the earth until an impervious stratum is reached. An impervious stratum is a layer of material in the earth that will not allow water to pass through it. This material is usually made of rock formation or clay. As the water reaches the impervious stratum it will begin to collect and saturate the surrounding soil, forming an aquifer. It is a common belief that the water quality of an aquifer is constant throughout the aquifer. In fact, the water quality can change dramatically within the confines of a given aquifer. This can be attributed to changes in the medium or mineral deposits in the zone of saturation.

Types of Groundwater Formations

The saturation zone of an aquifer may be any one of several different materials. Most aquifers occur in formations of sand or gravel. Others may be found in limestone, sandstone, shale, clay, or even silt. The type of formation will influence the water quality and yield of a well.

Water beneath the land surface occurs in two different zones- the unsaturated zone and the saturated zone. The unsaturated zone is the area immediately beneath the surface that contains both water and air. Any water in the unsaturated zone is not officially considered groundwater. The saturated zone is the area beneath the unsaturated zone where all interconnected openings contain water. The top of the saturated zone is referred to as the water table and any water beneath is officially considered groundwater. The water table:

- Marks the zone of saturation, when rock openings are completely saturated with water and officially called groundwater
- Is the depth at which an aquifer is first found
- Is capable of varying from place to place, and with time
- Is one sign of how surface water and groundwater flow into (or recharge) each other

Groundwater is stored under many types of geologic conditions. Areas where groundwater exists in sufficient quantities to supply wells or springs are called aquifers, a term that literally means “water bearer”.

Aquifers are composed of either consolidated or unconsolidated materials. Unconsolidated deposits are composed of loose rock or mineral particles of varying sizes. Examples include clay, silt, sand, and gravel. Alluvial deposits such as stream beds,
glacial drifts, and lake deposits are examples of unconsolidated materials. Consolidated deposits are rocks formed by mineral particles combining from heat and pressure or chemical reactions. They include sedimentary (previously unconsolidated) rocks, such as limestone, dolomite, shale, and sandstone; igneous (formed from molten) rocks, such as granite and basalt; and metamorphic (highly compressed) rocks, such as quartzite and gneiss. Some limestone and sandstone may be only partially cemented and are called semi-consolidated deposits. Aquifers are generally classified as Water Table (unconfined) and Artesian (confined).

Water Table Aquifer
An aquifer that is formed from a single impervious stratum and has an upper surface that is free to rise and fall with seasonal changes of recharge rate is known as a water table or unconfined aquifer. This condition allows the free flow of water in the aquifer generally in the same direction as surface water. The water level in a well located in a water table aquifer will not rise above the initial point of encounter. A perched aquifer is a very small, unconfined aquifer that doesn't contain much water and is only recharged by local precipitation.

Artesian Aquifer
Groundwater that becomes trapped under impermeable soil or rock may be under pressure. This is called a confined or artesian aquifer. Artesian wells originate from groundwater that is trapped between two impervious strata. As the water flows between these strata it becomes confined and as recharge continues, the water backs up, creating pressurized conditions in the aquifer. Water pressure in the confined aquifer will cause water in the well to rise above the aquifer level. The maximum level that the water in the well will rise to is known as the potentiometric surface, or potential water level. If this is higher than the top of the well, the well will overflow. If the water rises to the surface it is a free-flowing artesian well. If not, it is called a non-flowing artesian well.

Effects of Aquifer Characteristics
The ability of an aquifer to receive, store, or transmit water or contaminants depends on the characteristics of the aquifer. This includes the characteristics of the confining layers of a confined aquifer or the overlying unsaturated zone of an unconfined aquifer. Permeability, porosity, hydraulic gradient, potentiometric surface, and hydraulic conductivity are important concepts which determine groundwater movement.

Permeability is a measure of how fast water will flow through connected openings in soil or rock. Low permeability refers to soil or rock that restricts the movement of water through it. The specific yield is the actual amount of water that will drain out of saturated soil and rock by gravity flow. It does not drain out completely because some water forms a film that clings to soil and rock. Permeability is critical for water supply purposes; if contained in soil or rock will not drain out, it is not available to water wells.

The capacity of soil or rock to hold water is called porosity. Saturated sand contains about 20% water; gravel, 25%; and clay, 48%. Saturated bedrock with few crevices commonly contains less than 1% water. Clay is not a good water source despite its high water content, or porosity, because the extremely small size of the openings between microscopic particles creates friction that effectively halts water movement. Saturated clay is virtually impermeable.

Groundwater generally moves quite slowly—from about several feet per day to several feet per year—although it can move much faster in very permeable soils or in certain geologic formations,
such as cavernous limestone. Gravity and pressure differences are also important factors in groundwater movement. The direction and speed that groundwater and accompanying contaminants flow are to a large degree determined by the hydraulic gradient.

The hydraulic gradient is the slope of a water table, or in a confined aquifer, the slope of the potentiometric surface (the surface defined by the elevation to which water rises in a well open to the atmosphere - also called the piezometric surface). In many cases in unconfined aquifers, the hydraulic gradient parallels the slope of the land surface.

Hydraulic conductivity is a term that describes the ease with which water can pass through deposits and thus transmit water to a well. Generally, the larger the pores, the more permeable the material, and the more easily water can pass through. Coarse, sandy soils are quite porous and permeable, and thus groundwater generally moves through them rapidly. Bedrock is often not very porous, but may contain large fractures through which groundwater passes quickly. Clay soils are quite porous but not very permeable and water moves through clay very slowly. Fractures in consolidated rock play an important role in groundwater movement. The fractures allow water to flow through them in many directions. This makes it difficult to predict and measure groundwater flow in these formations. Aquifers composed of limestone and other water-soluble rocks often have fractures which have been widened by physical or chemical erosion to form sinkholes, caves, tunnels or solution channels. Water and any accompanying contaminants often move very rapidly in these aquifers.

Recharge and Discharge of Aquifers

Replenishment of ground water is known as recharge. Practically all ground water originates as surface water, though some ground water may be recharged through vertical leakage from other water-bearing formations. Primary sources of natural recharge include precipitation, streamflow, lakes, and reservoirs. Other contributions, known as artificial recharge, occur from excess irrigation, seepage from canals, and water purposely applied to augment ground water supplies. Water within the ground moves downward through the unsaturated zone under the action of gravity, whereas in the saturated zone it moves in a direction determined by the surrounding hydraulic (head) conditions.

The zone of contribution is the area of the aquifer that recharges the well. The zone of contribution can be altered by pumping. Any contaminants located in the zone of contribution might be drawn into the well along with the water; therefore, a source water protection area should encompass the zone of contribution if possible.

Discharge of ground water occurs when water emerges from the ground. Most natural discharge occurs as flow into surface water bodies, such as streams, lakes, and oceans; flow to the surface appears as a spring. Ground water near the surface may return directly to the atmosphere by evaporation from within the soil and by transpiration from vegetation. Pumpage from wells constitutes the major artificial discharge of ground water.

It must be noted that streams may lose flow to aquifers (aquifer recharge) during periods of high streamflow (such as spring run off), but gain flow from aquifers (aquifer discharge) during periods of low streamflow (such as late fall). When surface water loses water to the adjacent aquifer, the stream is called a losing stream. When the opposite occurs and water flows from the groundwater to the stream, it is called a gaining stream. Thus one may encounter an extreme gradient reversal within a twelve-month period; water levels measured during only one period
can easily mislead an investigator into erroneously mapping ground water recharge or discharge areas. For this reason, it is important that ground water levels be measured on a monthly, or at least quarterly, basis until ground water / surface water interactions are understood.

Unconfined aquifers are recharged primarily from precipitation percolating, or infiltrating, down from ground surface. Confined aquifers are generally recharged where the aquifer materials are exposed at the land's surface (outcrop).

Properly identifying the recharge area is critical in ground water protection because the introduction of contaminants within the recharge area can cause aquifer contamination.
To ensure the integrity of water well construction, and thus prevent potential pollution of state groundwaters, OEHS supervises a certification program of drillers and pump installers for water supply, geothermal, commercial and industrial wells. The mission of the water well certification program is to protect the health of West Virginia citizens who rely on water wells for their drinking water source, through implementation of the West Virginia Water Well Design Standards. Protection of ground water resources and aquifers is accomplished by assuring that water wells are constructed, modified, and abandoned in a technically sound manner.

The purpose of design standards and proper well development is to improve water quality and quantity and protect public health. WV Water Well Design Standards (Title 64-Series 46) are available from the Secretary of State’s website at http://www.wvsos.com/csr/verify.asp?TitleSeries=64-46. As an operator, it is important to understand some basic water well terms instrumental in protecting groundwater sources. The following section is only a brief overview.

All wells in WV, public and private, must be cased and grouted to prevent surface water contamination from entering the aquifer and to exclude undesirable groundwater zones. Casing must be made of steel, concrete or a safe plastic such as PVC. The casing should be 19 feet below ground and at least one foot above ground. The hole should be at least 4 inches larger in diameter than the casing to allow for cement grout. The space between the casing and the wall of the hole is known as the annular space. The annular space is grouted with cement, neat cement, bentonite or a bentonite/cement mix to seal the casing against the borehole. Grout also protects the steel casing from contact with corrosive soils and waters, which would cause it to rust out. The full length of the well casing should be fully grouted from bottom to the top to prevent air from being trapped and ensure proper sealing of the cavity.

Well Screens
Many rock wells are not equipped with screens. Where water is obtained from water-bearing sands, some type screen must be provided. The selection and construction of this section of the well is most important. The life of the well depends to a large degree on the proper screen. The screen is just what the name implies—a device to hold back sand or any other foreign matter and let water through to the pump. The screen is placed in the well where it is not available for inspection and repair, but the life and performance of the well is dependent upon it. Therefore, serious consideration should be given to its selection.

Perhaps the two most important items for consideration in selecting the screen are the size of the sand encountered and the chemical characteristics of the water. The screen openings must be small enough to hold back the larger sand grains or gravel and at the same time be large enough so that resistance to the flow of water is reduced. The screen openings are determined after the particular sand size is measured. If the screen is improperly sized or ruptures and permits sand to pass, the pump, valves, and meters in the distribution system will be damaged and/or last only a short time. Meters will become plugged and inoperable or complaints of sand in the water will result.

Well Cap
Weatherproof and insect-proof water supply well covers are required. Electrical connections for
the pump and any treatment installations also require weatherproof and insect-proof covers to
prevent contamination of the well. Ground fault protectors would also be desirable.

Well Ventilation
Well casing and discharge column pipe vents should extend at least 18 inches above ground. An
air vent is needed for most wells. This vent is usually part of the well cap. The outlets should be
turned down to prevent rainwater from entering and screened to prevent contamination by
insects, dust, debris, etc.

Sanitary Well Seal
A sanitary well seal is used instead of a well cap on wells that have piping exiting at the top of
the casing. It consists of a rubber gasket that is sandwiched between an upper and lower metal
plate and all fits inside the top of the casing. The sanitary well seal has openings on the top for
piping. Two-piece top plate sanitary seals are only acceptable for wells located in an approved
well house. One-piece top plate sanitary seals are acceptable for outdoor use. Well seals are
usually made of rubber or neoprene. A welded seal is also approved and used in some cases.

Pitless Units and Pitless Adapters
A pitless adaptor or pitless unit is used to create a frost-proof connection between the well and
the water service line. The water service line is attached to the fittings on the well underground –
below the frost line, typically 18 to 36 inches below the surface. This is to prevent freezing
during cold weather. A water service line connects the well to the water distribution system.
Pitless adapters are fittings that can be installed using a hole through the well casing. Pitless units
are more complex assemblies, which completely replace the well casing between the frost line
and the top of the well.

Last but not least, it is very important to properly abandon water wells no longer in use in
accordance with 64CSR46 to prevent future aquifer contamination.

Well Terms
The top of the water table or natural water level in the well while the pump is not running is
called the static water level or static head. In most cases, the static water level rarely fluctuates
much over time as the aquifer is recharged through the hydrologic water cycle. But in some
cases, due to excess pumpage from the aquifer over time or drought, the static water level lowers
as the aquifer becomes depleted. The top of the water level in the well while the pump is
running is called the pumping water level. This level is important because it is an indicator of the
ability of the aquifer to supply water to the well. The difference between the static water level
and the pumping water level is known as the drawdown of the well. Drawdown is determined by
the ability of the aquifer to replace the amount of water that is being pumped from the well. If
there is an abundance of water in an aquifer and the water can move freely to the well, the
drawdown will be fairly low, typical of sand and gravel formations. Conversely, if the water
cannot move through the formation quickly enough to replace the water being pumped, the
drawdown can be quite high.

Well yield and specific capacity are two terms that refer to the measurement of the amount of
water a well can produce. Well yield is generally expressed in gallons per minute (gpm). Specific
capacity is the rate of water that discharges from a well per unit of drawdown (usually feet). It is
determined by dividing the well yield by the drawdown and is usually expressed in gallons per
minute per foot (gpm/ft). For example, if a well pumps 100 gpm and it has a drawdown of 30 feet, its specific capacity at that flow rate is 3.33 gpm/ft. By tracking the specific capacity of a well over time, an operator can identify well and aquifer performance problems.

As water is pumped from the well, a depression in the water table forms in the shape of an inverted cone called the cone of depression. If the drawdown is low, the cone of depression may only extend for a short distance away from the well. Conversely, if the drawdown is high, the cone of depression can extend for quite a ways out from the well, in some cases for hundreds of feet. The cone will continue to enlarge until the rate of groundwater flow or recharge equals the pumping rate, or sufficient leakage occurs between formations to equal the pumping rate, or the cone intercepts a surface water body (lake, stream, etc), or some combination of these occur.

Well Pumps

Most well pumps that are installed in public water systems are vertical turbine centrifugal pumps. The main difference between vertical turbines and other types of centrifugal pumps is that the vertical turbine impeller discharges water out of the top of the impeller. This water flows upward along the pump shaft, instead of at a right angle to the shaft. These pumps can generate the high discharge pressures needed to pump water several hundred feet out of the ground. In some very small, shallow wells airlift pumps may be used. These are normally not suitable for wells supplying most public water systems.

“Staging” or stacking several impellers on the shaft is how the high pressures are generated. As the water passes from the discharge of one impeller to the suction of the impeller above it, the pressure that the pump develops is increased. If five impellers that each generates 100 feet of head are staged in a pump, the pump will generate 500 feet of head pressure. Anytime pumps are operated in series, where one pump or impeller discharges to the suction of another pump; the pressure will increase while the flow remains constant.

There are two kinds of vertical turbine pumps installed in wells. One of these is known as a submersible pump. A submersible pump will have the motor located beneath the pump. In a small well, it is the least expensive centrifugal well pump to purchase and install. Because there is no pump shaft running to the surface, the submersible is also the ideal pump installation in wells where vertical casing alignment problems exist. The biggest disadvantage of submersible pump installations is that the pump must be pulled from the well when the motor needs repair. Since this is usually the most common type of repair for water wells, the cost of maintenance for submersible pumps is very high.

The other type of vertical turbine well pump is known as a line shaft pump. Line shaft pumps have the motor located on the well head. A line shaft runs down the discharge column pipe to the pump. The shaft is supported by line shaft bearings that center and stabilize the shaft in the column pipe. Line shaft pumps will cost more than submersible installations.
GROUNDWATER UNDER THE INFLUENCE OF SURFACE WATER

Some systems that were once thought to be groundwater are now defined as groundwater under the influence of surface water (GWUDI) by the amended SDWA regulations. GWUDI refers to water taken from the ground that has not undergone adequate natural filtration. Consequently, this water has the potential to contain large diameter pathogens commonly found in surface waters, namely *Giardia* and *Cryptosporidium*. Since these pathogens can be found in high numbers in the environment, and *Cryptosporidium* is difficult to kill with typical disinfection practices, it has been determined that filtration is an important pathogen barrier to protect public health when water supplies are determined to be GWUDI. The regulatory authority mandating this treatment is found in the SWTR. These systems must now treat their water like other surface supplies and filter and disinfect.

Surface or boxed springs are now considered to be surface water supplies. Infiltration galleries are also considered to be surface supplies. These are wells that are located so close to a river or stream that the water in the surface supply percolates directly into the wells because the radius of influence overlaps the riverbed.

GWUDI requires unique treatment technologies because the characteristics of groundwater and surface waters are very different. Even if groundwater is under the influence of surface water it still retains much of its water quality characteristics with the addition of pathogens and perhaps organics found in surface waters.

Determination of GWUDI Systems

When surface water can infiltrate a groundwater supply there is a high possibility that the groundwater could be contaminated with *Giardia*, viruses, turbidity and organic material from the surface water source. As a result, the SWTR of the SDWA requires each state determine which groundwater supplies are influenced by surface water. When a groundwater supply is identified as being under the direct influence of surface water it is no longer called a groundwater supply but is referred to as groundwater under the direct influence of surface water. When a supply is designated as GWUDI, the state’s surface water rules apply to the source rather than the groundwater rules.

It is the responsibility of OEHS to identify and categorize all groundwater supplies into either groundwater or GWUDI. It is the responsibility of the utility to then perform the analysis required for this determination.

To determine if a groundwater supply is under the direct influence of surface water, EPA has developed procedures which focus on significant and relatively rapid shifts in water quality characteristics such as turbidity, temperature and pH. When these shifts can be closely correlated with rainfall, breakup, or other surface water conditions or when certain indicator organisms associated with surface water are found, the source is said to be under the direct influence of surface water and will be required to meet all of the requirements of the SWTR, including disinfection and filtration.
Importance of Organisms
Although a significant and relatively rapid shift in groundwater quality can indicate the influence of surface water, it is the analysis for surface water organisms that determines if the supply falls under the requirements of the SWTR. The intent of the analysis is to identify organisms that are likely to occur only in surface waters. The presence of such organisms in groundwater indicates that at least some surface water has been mixed with the groundwater.

Infiltration galleries
An infiltration gallery is one means of using the natural filtration benefits of the ground to reduce water quality variances. Typically, sand backfill is placed over the bedding to improve the filtration of the natural soils in which the gallery is constructed. It is important that the embedment and backfill of the infiltration pipe be protected so that it is not washed out. The perforated pipe is connected to a well or caisson along the shore of the source. Raw water pumps lift the water from the well to the treatment facility. The wellhouse should be located at an elevation above the highest flood level of the source.

Infiltration galleries are often under the direct influence of surface water and therefore are frequently classified as GWUDI. The water system needs to determine if an infiltration gallery is classified as GWUDI and is considered to be a surface water source under the definition used by its state. If so, it should be treated as a surface water source.

Springs
Springs occur where the natural flow of groundwater rises to the surface. There are two types of springs, gravity and artesian. Gravity springs discharge from unconfined aquifers, which are water-bearing aquifers that rest on an impervious stratum and outcrop to the surface. Artesian springs discharge from artesian (confined) aquifers, which are aquifers that have both an upper and lower layer of impermeable material that forms a natural barrier of protection against contaminants. Artesian springs are under pressure because of the confining strata between which the water-bearing aquifer lies. Because of the upper confining layers, the water in the aquifer is at a pressure greater than the atmospheric pressure. An artesian spring occurs where the artesian aquifer either is cracked by a fault allowing the pressured water to escape or outcrops at a low elevation.

Springs may be considered either surface water or groundwater sources, depending on their characteristics and on the way a state classifies springs. The water system needs to determine if the spring is under the direct influence of surface water and if it would be classified as a surface water source under the definition used by its state. If so, it should be treated as a surface water source.

When a spring is chosen for a water supply, the water system should determine that the water quality is acceptable, the quantity of water available is adequate to meet the needs of the water system, and the spring is protected from contamination. The quantity of water available from a spring can vary significantly due to changes in groundwater storage. Depending on the type of spring, changes in groundwater storage can come from seasonal variations such as dry periods and withdrawals of nearby wells. Special steps should be taken to prevent contamination of the spring during construction of the improvements necessary to supply the source water.
SURFACE WATER

Surface water accumulates mainly as a result of direct runoff from precipitation (rain or snow) or recharge from groundwater. Therefore, surface waters are very susceptible to contamination. You name it - manure, gasoline, pesticides, fertilizers, industrial chemicals, bacteria, air pollution – it can enter surface waters. Because of their high susceptibility to contaminants, surface water sources must meet strict monitoring and treatment requirements for filtration and disinfection. While there are relatively few surface water systems in the world, they provide more water to more people than any other type of system. These systems are typically used by large cities that need a large volume of water to meet their needs.

The type of surface water source (i.e., lake, stream, etc.) is an important factor that can affect raw water quality. A stream with a large watershed in which a land use is predominantly farming, may experience large swings in raw water turbidity, particularly after a rainfall event. If the source is a lake or reservoir with the same general watershed characteristics, the potential for large raw water turbidity swings is greatly reduced, due to the dilution and settling that occur in a reservoir.

There are many potential raw water quality problems for a surface water source, including:

- Zebra mussels and Asiatic clams – can clog intakes reducing capacity;
- Algae – can cause taste and odor problems;
- Pathogens – can cause intestinal illnesses and other diseases;
- Turbidity – can be difficult to remove depending on the size and concentration of particles;
- Natural organic matter – difficult to remove and can form carcinogenic compounds in combination with certain disinfectants;
- SOCs (synthetic organic compounds) and IOCs (inorganic compounds) of anthropogenic origin – can cause adverse health effects and affect treatment decisions; and,
- Iron and manganese – can cause discoloration and staining problems.

These are just a few physical, chemical, and biological elements found in a surface water that make treatment (filtration and disinfection) necessary to ensure a safe supply of potable water.

Water that is taken from lakes, rivers, or impoundments is known as surface water. Many large systems make use of surface supplies because these rivers and lakes offer storage of large amounts of water. The chemical characteristics of surface water differ from groundwater in several ways and generally require a greater degree of treatment to meet the Drinking Water standards. The minimum treatment required for surface water is filtration and disinfection.

Rivers and Streams

A river or stream is nothing more than surface water finding its way over land from a higher altitude to a lower altitude, all due to gravity. When rain falls on the land, it either seeps into the ground or becomes runoff, which flows downhill into rivers and lakes, on its journey towards the seas. In most landscapes the land is not perfectly flat -- it slopes downhill in some direction. Flowing water finds its way downhill initially as small creeks. As small creeks flow downhill they merge to form larger streams and rivers. Rivers eventually end up flowing into the oceans. If water flows to a place that is surrounded by higher land on all sides, a lake will form. If man has built a dam to hinder a river's flow, the lake that forms is a reservoir.
The water in a river doesn't all come from surface runoff. Rain falling on the land also seeps into the earth to form ground water. At a certain depth below the land surface, called the water table, the ground becomes saturated with water. If a river bank happens to cut into this saturated layer, as most rivers do, then water will seep out of the ground into the river. Ground water seepage can sometimes be seen when a road is built through water-bearing layers, and even on a driveway!

The earth below the water table, referred to as an aquifer, is saturated, whereas the earth above is not. The top layer (unsaturated soil/rock material) is usually wet, but not totally saturated. Saturated, water-bearing materials often exist in horizontal layers beneath the land surface. Since rivers, in time, may cut vertically into the ground as they flow, the water-bearing layers of rock can become exposed on the river banks. Thus, some of the water in rivers is attributed to flow coming out of the banks. This is why even during droughts there is usually some water in streams.

Lakes and Reservoirs

There are certain advantages and disadvantages related to taking water from rivers or lakes. Lake supplies maintain a more constant quality of water. The turbidity, temperature, and pH do not fluctuate as much from day to day as a river supply. Minerals tend to concentrate in lakes. Iron, manganese, and other dissolved metals are retained in the lake with the highest concentration being found near the bottom. This occurs due to the lack of dissolved oxygen at the lower depths. The dissolved oxygen from wind and algae growth near the surface will oxidize some of the dissolved metals so that they precipitate. The length of detention time in the lake aids in the natural bacteria removal. The detention time also aids in the natural removal of suspended material or turbidity by sedimentation.

The quality of the water in lakes is affected by an occurrence known as "Turnover." This happens once or twice a year, generally in the springtime, as the water temperature of the lake begins to change. The density or "Specific Gravity" of the water changes as the water temperature changes. Water is heaviest or most dense at 4 degrees Celsius or about 39 degrees Fahrenheit. In a deep lake the water at the bottom will always be about 4 degrees Celsius because of its higher Specific Gravity. Stratification occurs as layers of water, at different temperatures, form in the lake. In the spring as ice on the surface melts, it becomes warmer (and heavier) and begins to sink. As this happens water at the bottom is forced to the surface. This mixing action stirs up silt and decaying organic material and as a result can cause serious taste and odor problems. In the late fall as water at the surface cools it also gets heavier and sinks to create the same situation. Changes in water temperature and density also affect chemical treatment and settling in surface water treatment plants.

The turbidity, temperature and pH of water taken from rivers may fluctuate on a daily, or sometimes on an hourly basis. Rainfall and run-off usually contribute to these changes. Changes in the quality can also result from waste discharged from upstream sources. Minerals do not accumulate in rivers as they do in lakes. Mainly, because any water that is not used is carried downstream rather than being retained as it is in a lake. Jar testing should be done when the raw water quality changes. A jar test will help the operations staff determine what adjustments must be made in the treatment process when these changes occur.

Intake Structures

The type and location of the intake structure in the surface supply will determine the kind of treatment necessary for production of potable water. Ordinances should be passed to protect the
water around the intake structure. Boating, swimming, and fishing should be discouraged in the area of the intake. Floating buoys should be placed as markers around the intake structure.

The intake structure should be designed to prevent the structure from freezing in the winter. Proper screening of the intake is also required to protect pumps and valves from serious damage. Periodic maintenance should be performed to keep screens from clogging and clear of restrictions. In some systems this is accomplished by flushing or backwashing the screen with water pressure supplied by a backwash water line located within the structure. Water is forced through the screen, washing the debris away from the structure.

River and Stream Intakes
The most common type of intake in flowing water is a simple pipe extended into the water. This pipe or intake line feeds water to low service pumps usually located in a pump house on the bank. Provisions should be made to prevent floating material from clogging the intake screen. Intake screens should be small enough to prevent clogging and large enough to allow adequate intake flow. The intake line should be located perpendicular to the flow or at a 45 degree angle downstream. Intake lines that are pointed directly downstream may experience problems during high flows. A low-pressure area will develop around the intake restricting the flow of water into the structure. The intake pipe should be elevated off the bottom to avoid heavy concentrations of sand, silt and dissolved minerals.

Lake and Reservoir Intakes
Intakes in lakes and reservoirs are generally located in 15 feet or more of water to provide multiple intake levels. These inlets are usually located 4 to 6 feet from the surface and at 5 to 10 feet intervals depending on the depth of the water. This will allow the operations staff to select water from different levels in the lake and minimize treatment costs by obtaining the best quality raw water. Inlets should never be located near the bottom of the lake to avoid high concentrations of dissolved minerals and gases, turbidity, and tastes and odors. Inlets are controlled by gate valves and operated from the top of the intake structure. These gate valves should be operated periodically to keep the valve in good working order.

Copper Sulfate Treatment
Algae in lakes and reservoirs can be killed with copper sulfate, CuSO₄. It usually requires dosages of about 0.5 to 1.0 mg/L to kill most algae blooms. However, if the action is taken early in the spring before these algal blooms occur, dosages as low as 0.1 mg/L may be sufficient. Copper sulfate is most effective when it is applied to soft waters that have a low hardness and a high pH. Never add copper sulfate in dosages higher than 1.0 mg/L. Copper sulfate will kill many game fish at very low concentrations.

Surface Water Temperature
Surface water sources for drinking water may experience considerable changes in temperature during the year (especially in northern areas of the U.S.) Colder water is denser than warmer water. When treating cold water, most processes slow down. Flocculation and settling go more slowly and chemical reactions take more time. Changes in source water temperature often require changes in the water treatment process that would not otherwise be required if the temperature remained constant.

Point Source Pollution
When a single source of pollution at a specific location can be identified, it is called point source pollution. Illegal drains from a factory discharging contaminants or an overflow pipe from a sewer system are examples of point source pollution. Many communities across the U.S. are attempting to reduce or eliminate sewer overflows, especially during heavy rain events. These discharges pollute waterways and adversely affect animal life within these surface waters. The pollution also presents health threats to humans who may drink the water or enjoy it for recreational purposes. Point sources of pollution often can be easily identified, but are very difficult (and usually expensive) to correct.

Non-point Source Pollution

Non-point sources of pollution include farm runoff of chemicals such as fertilizers, animal wastes and pesticides. During periods of rain, these pollutants will drain from higher land levels into waterways and, also, adversely affect animal life within the surface water. High levels of pesticides and herbicides may also threaten humans and animals that may be exposed to the water.
WATER TURNOVER

Operators often have difficulty understanding the causes of “water turnover” in reservoirs and the reasons for the fish kills which may occur following these events. Fish kills are frequently caused by low dissolved oxygen concentrations in the water.

Most reservoirs mix or circulate their waters during the winter months. Generally, the reservoir surfaces only freeze for short durations, or do not freeze at all. However, little or no mixing of the reservoir’s water volume may occur during the hottest months of summer. Large populations called “blooms” composed of microscopic algae decreases sunlight penetration into the reservoir to a depth of about 6 feet. Suspended clay particles in the water may also decrease sunlight penetration. This deeper water cools due to the absence of sunlight to warm it. Cooler water has a greater density than warmer water. A “layering effect” of water occurs throughout the reservoir when the cooler, more dense water remains near the reservoir bottom, and warmer water resides near the surface. During daylight hours, plants and algae release oxygen into the water while producing glucose, their sugar-like food. Little or no oxygen is produced in these cool layers of water, due to the absence of sunlight which prohibits plant and algae growth. Eventually, the dissolved oxygen is consumed from the cool waters by decomposing organic matter. This is caused by plants and animals that have died and sunk to the reservoir bottom.

During winter when water temperatures reach 32 °F, ice forms at the water’s surface and not the reservoir bottom. Water reaches its maximum density at 39.4 °F. Colder or warmer waters will always be found closer to the reservoir’s surface. Reservoir turnovers often occur during summer after cold, hard rains, windy weather or following the first cold weather of fall. When air and surface water temperatures cool during the fall, surface waters will “sink” when they become more dense than the waters near the reservoir bottom. Warmer, less dense bottom waters are forced to the surface creating a mix or a “turnover.” If large volumes of oxygen deficient bottom waters are present in the reservoir, the entire reservoir may be depleted of dissolved oxygen as the waters mix. Low concentrations of dissolved oxygen are responsible for most fish kills.

Abrupt changes in weather conditions and air and water temperatures can rapidly affect the reservoir environment. Typically, reservoirs that are older, have greater depth, or are sheltered from prevailing winds, may be affected more severely from water turnovers. Shallow reservoirs, which have a maximum depth of 6 to 8 feet and are located in sites subject to prevailing winds, are less likely to have fish kills associated with water turnovers. Similarly, those reservoirs that contain less organic matter such as leaves, manure, and aquatic plants are less likely to experience fish kills as a result of water turnover. The type of vegetation in the watershed (wooded or pasture) will influence the amount of oxygen consuming organic matter which enters the reservoir. Human activities such as livestock pasturing, over-fertilizing lawns, and drainage from septic systems will encourage aquatic plant growth which will eventually die and consume dissolved oxygen.

Unless the reservoir has dense aquatic plant growth, microscopic algae “blooms” generally produce most of the dissolved oxygen in reservoirs and lakes. Algae and plants produce oxygen during daylight hours, but consume oxygen during the night.

Due to the dying algae bloom, the water color may change from green to black or gray with black streaks.
Low oxygen conditions may occur in reservoirs with prolonged ice and snow cover. Snow covered ice will prevent sunlight penetration to the algae blooms and aquatic plants, and if prolonged, will eventually cause their death. Under these conditions, dissolved oxygen cannot be produced, but is consumed by the algae blooms and plants. The water beneath the ice has no access to air at the surface. Decaying algae blooms and plant material will further lower dissolved oxygen concentrations, and eventually a fish kill may occur.

Proper aeration, water circulation and water quality management will reduce the severity of “water turnover” and prevent dissolved oxygen-related fish kills. Avoiding excessive depths (greater than 8 feet deep when possible) and shallow areas when constructing reservoirs can help reduce the severity of dissolved oxygen depletions. Constructing minimum reservoir depths of 3 feet will help prevent the growth of aquatic plants and filamentous algae.

To a lesser extent, oxygen is also absorbed from the atmosphere at the water’s surface. Wave action or other disturbances will increase the water’s dissolved oxygen concentration by expanding its surface area for oxygen to enter. Healthy algae blooms and aquatic plant populations will produce enough dissolved oxygen to support life in a reservoir throughout a 24 hour period. However, dying populations may consume more dissolved oxygen at night than they produce during the day. When algae blooms or aquatic plants release less dissolved oxygen during cloudy days than they consume at night, low dissolved oxygen conditions may occur. The oxygen consumed by the constant decay of algae, vegetation and other organic matter will further deplete dissolved oxygen concentrations in the reservoir. Low dissolved oxygen conditions often occur during the night or just before dawn, particularly when water temperatures are warm. Warm water holds less oxygen than cold water. Increases in altitude and salinity will also lessen the ability of water to hold dissolved oxygen.
SOURCE WATER QUANTITY

One of the most important requirements for any water system is the ability to meet the water quantity demands of customers at all times. This requirement means that an adequate quantity of source water should be available to meet the customers’ needs. It is important to determine whether the water system has an adequate source of supply, because prolonged interruptions or reductions in the source water supply may cause low pressures or water outages in the distribution system that pose a public health hazard. When service pressure is insufficient, other liquids are much more likely to enter the system through cross-connections and contaminate the water supply.

Demand
The amount of water used by the water system’s customers is referred to as the demand placed on that system. Several different sources contribute to a system’s demand.

Residential Usage
Water that is used by people during their day to day routine is referred to as domestic usage. This includes drinking water, bathing, preparing food, and numerous other activities like watering a lawn, washing the car and doing laundry. Two main factors determining domestic water usage or demand include first, the number of individuals the served by the system, and the amount of water needed per day per person. The average daily consumption of water per person per day is considered to be 50 gallons according to the West Virginia Public Service Commission (PSC). The PSC considers 150 gallons as the average daily household consumption. Residential usage varies depending on location and population density. Rural areas traditionally have lower daily consumption rates than urban or more densely populated areas.

Commercial Usage
Water used in the production and manufacturing of goods is considered commercial usage. Industrial demands in rural areas typically come from dairies or other food processing plants, wood products and textiles. In West Virginia, many coal companies use vast amounts of water to clean coal after it has been mined. It is common for a single industrial user to use as much water as the entire residential or domestic demand of the system.

Meeting Peak Demand
Peak water consumption periods will vary daily and according to seasonal conditions. The major responsibility of the water system and the operator is to make sure that potable water is available during the times it is needed.

Seasonal Demand
The amount of water used each day typically varies according to the season. Higher daily demands occur during hot summer months such as July and August while the demand will tend to drop off during winter months such as January and February. Variances in temperature and rainfall can also lead to decreases or increases in daily water consumption.

Daily Peak Demands
Ninety percent of the daily water usage typically occurs during a 16-hour period. The peak demand periods occur between the early morning hours (5:00 am to 10:00 am) and again during the early evening hours (5:00 pm to 10:00 pm). In rural areas the highest peak demands usually occur on weekends. The opposite is true for more urban areas as the highest peak demands take
place during the week.
SOURCE WATER ASSESSMENT AND PROTECTION

Virtually every stream, lake, river and aquifer in this country is used as a drinking water source. Protecting these source waters from contaminants is a major national priority in protecting public health through ensuring a clean, safe drinking water supply. Reducing the threat of waterborne illnesses helps save hundreds of millions of dollars annually by eliminating costly health care expenses, lost wages, work absences, decreased job productivity, and additional treatment costs incurred by PWSs required to meet federal drinking water quality standards. The Source Water Assessment and Protection Program (SWAP), authorized by the 1996 Amendments to the SDWA, outlines a comprehensive plan to achieve maximum public health protection.

Source Water Assessment and Protection Plans:
- Are an integral part of the multiple-barrier approach for public health protection.
- Are a preventive effort designed to eliminate unnecessary risk of contamination to the source of water used by a public water supply system.
- Are a community-based approach to protecting drinking water through a process that identifies the origins of certain contaminants and then determines the best way to manage them at the community level.
- Are achieved through the development and implementation of a SWAP plan.
- Can work very well with existing environmental programs by serving as a basis for prioritization for permitting, inspections, and enforcement.

The general concepts of SWAP are applied to public water supply systems using surface water, ground water (also known as Wellhead Protection), or water from a source with significant surface water / ground water interaction. Source water protection is an extension of the wellhead protection concept and includes systems using water from any type of source. Source water protection plan development is designed to manage a specific land area identified or delineated according to the local hydrology (for surface water systems) or hydrogeology (for ground water systems) to prevent ground or surface water contamination. According to the source water assessment and protection plan, it is essential that every community take these six steps:

Step 1- Delineate
Delineating the source water protection area (SWPA) shows the area to be protected and prescribes the boundaries of the area from which drinking water supplies are drawn. This step also designates the area within which contaminant source inventories are conducted, identifying substances or activities that may pose potential risks to the drinking water supplies within that area. Delineations may be performed using a variety of accepted methods (e.g., calculated fixed radius; computer modeling, etc.), and are most protective when they include all sources of water and potential contaminants and activities affecting them within the prescribed area.

Step 2- Inventory
The source inventory lists all documented and potential contaminant sources or activities of concern that may be potential threats to drinking water supplies. The source inventory indicates the level of concern assigned to each potential risk by ranking, rating, or prioritizing management measures to reduce or eliminate them.

Step 3- Determine the Susceptibility
Determining susceptibility of the public water supply (PWS) to inventoried threats relates the nature and severity of the threat to the likelihood of source waters serving that system being
contaminated. Mitigating factors taken into account when determining susceptibility include potency or toxicity of the contaminant, volume of discharge or release, distance from wells or intakes, and the likelihood of entry of the contaminant into the source waters.

Step 4- Notify and Involve the Public
To ensure that the public has information necessary to control and modify their own actions to prevent contamination and to participate effectively in community activities to protect drinking water.
- Use plain English in reports
- Provide maps of the SWPA
- List, show or indicate potential sources/threats to the PWS identified within the SWPA
- List, rank, or otherwise prioritize importance of threats identified to the individual PWS and explains what it means to your water supply
- Reports are unique to each individual PWS
- Public meetings are effective methods of involving the community.

Step 5-Implement Management Measures
Using the information gathered from the assessments allows specific management measures to be formulated and put in place. By examining the results of the contaminant source inventory and the susceptibility determination for each PWS, these measures can be tailored to address each threat or array of risks specific to each PWS. A successful drinking water contamination prevention plan is tailored to the unique concerns and circumstances of the local community. Effective involvement is a critical component to a successful public health plan. Every PWS’s source water is unique. Management measures need to tailor local actions to address threats to your water supplies. Early involvement in the source water protection process and consensus on need for action is essential — you can help!

Step 6-Develop Contingency Planning Strategies
In the event of short- or long-term water drinking water supply disruption as a result of natural causes (e.g., biological contamination or floods) or intentional destruction (e.g., vandalism or terrorism), water supply replacement strategies that coordinate all available efforts to restore service to single or multiple PWSs are an indispensible part of any drinking water protection program.
- Outline emergency plans for short or long-term drinking water supply replacement
- Direct plan towards water supply interruption due to contamination or physical damage to supply system
- Coordinate the efforts of water supply managers with those of civil defense, local emergency response, hazmat/spill cleanup, and local area disaster response networks

An initial SWAP report has been developed for every PWS in the state. Additional guidance and assistance for setting up a SWAP plan is available from OEHS, but local effort and initiative are key to developing a useful plan.
SANITARY SURVEY

A comprehensive sanitary survey is an important element in helping water systems protect public health. Sanitary surveys are carried out to evaluate: (1) the capability of a drinking water system to consistently and reliably deliver an adequate quality and quantity of safe drinking water to the consumer, and (2) the system’s compliance with federal drinking water regulations. Much of the information generated by a sanitary survey helps identify existing and potential sanitary risks.

Conducting sanitary surveys on a routine basis is an important element in preventing contamination of drinking water supplies. EPA recognizes the importance of sound sanitary surveys in helping water systems protect public health. Sanitary surveys are an opportunity to work and communicate with water systems in a preventative mode.

Sanitary surveys also aid in the process of evaluating a public water system’s progress in complying with federal and state regulations which require the improvement of the capabilities of the system to provide safe drinking water. Sanitary surveys provide the water system with technical and management information regarding the operation of the system from the water source, through the treatment facilities and the distribution system.

Sanitary surveys are a means by which a comprehensive inspection of the entire water delivery system and its operations and maintenance (O&M) can be performed. These surveys are structured to determine whether a system’s source, facilities, equipment, operation, maintenance, and management are effective in producing safe drinking water. Sanitary surveys also evaluate a system’s compliance with federal drinking water regulations, as well as state regulations and operational requirements. In addition, a sanitary survey evaluates water quality data and administrative issues and draws conclusions about the system’s integrity and its capability for consistently and reliably delivering an adequate supply of safe drinking water to consumers. Conducting sanitary surveys on a regular basis is the best means of identifying potential problems and possible reasons for trends in finished water quality and demand that may need to be addressed by enhanced O&M or a system upgrade. Sanitary surveys play a fundamental role in ensuring that reliable and safe drinking water is provided to the public by public water systems.

Benefits of a Sanitary Survey

EPA believes that periodic sanitary surveys, along with appropriate corrective measures, are indispensable for assuring the long-term quality and safety of drinking water. Properly conducted sanitary surveys help public water systems protect public health. Sanitary surveys have many benefits for the operation and management of public water systems. Sanitary surveys may also provide support to enforcement actions by establishing a record of conditions and operations at a point in time.

EPA lists the following specific benefits of conducting sanitary surveys:

- Operator education;
- Source protection;
- Risk evaluation;
- Technical assistance and training;
- Independent, third party system review;
- Information for monitoring waiver programs;
• Identification of factors limiting a system’s ability to continually provide safe drinking water;
• Reduction of monitoring requirements;
• Reduction of formal enforcement actions in favor of more informal action;
• Reduction of oversight by state monitoring and enforcement personnel;
• Increased communication between state drinking water personnel and public water system operators;
• Provision of contact personnel to notify in case of emergencies or for technical assistance;
• Improvement of system compliance with state drinking water regulations;
• Identification of candidate systems for enforcement action;
• Identification of candidates for Comprehensive Performance Evaluations;
• Verification of data validity;
• Validation of test equipment and procedures;
• Reduced risk of waterborne disease outbreaks;
• Encouragement of disaster response planning; and
• Improved system security.
WATER QUALITY CHARACTERISTICS

Water acquires certain characteristics from its surroundings – from the soils, rocks, minerals, and air that the water contacts, and from animals and people that contact and influence the water. Water quality and characteristics are important to consider when choosing a water source. The quality of water is determined by the measuring the concentrations of impurities in it. Water quality characteristics are classified into four broad categories:

- Physical
- Chemical
- Biological
- Radiological

Physical Characteristics
There are a number of physical characteristics of water that consumers notice because they can be seen, smelled or tasted. Generally, these physical characteristics are important only from an aesthetic standpoint, but are typically the basis for many consumer complaints. Interestingly, complaints regarding the aesthetic quality of the water are generally the driving force behind the installation of water treatment devices. If drinking water looks, smells or tastes bad, it may be rejected in favor of an unsafe source that does look, smell or taste good.

Temperature
Water temperature will dictate how it tastes, how easily it dissolves things, and whether it’s effective for other uses such as cooling. Generally, surface water sources are warmer than groundwater sources. Groundwater sources typically have constant temperatures, although some may be warmer than others. Temperature is a useful tool for determining if groundwater is directly influenced by surface water.

Turbidity
Turbidity is caused by very small particles such as clay and silt that are suspended in the water. When water is cloudy, it is said to be turbid or have a high turbidity. Consumers will object to water that is highly turbid, even though it may be perfectly safe to drink. Removal of turbidity not only makes the water more pleasing from an aesthetic standpoint, but it also has public health implications. High turbidity in finished water is a potential health risk, because viruses and bacteria can hide, within the turbidity-causing particulates making disinfection difficult. Removal/inactivation of these particulates reduces the chance of pathogenic microorganisms in finished water.

Pick up a glass of water and hold it to the light. Can you see any finely divided, insoluble particles suspended in the water? Or does the water seem hazy? If so, the water is turbid. Turbidity and suspended matter are not synonymous terms, although most of us use the terms more or less interchangeably. Correctly speaking, suspended matter is that material which can be removed from water through filtration or the coagulation and filtration process. Turbidity, on the other hand, is a measure of the amount of light scattered and absorbed by water because of the suspended matter in the water.

There is also some danger of confusion regarding turbidity and color. Turbidity is the lack of clarity or brilliance in water. Water may have a great deal of color -- it may even be dark brown -- and still be clear and without suspended matter. The EPA recommends that turbidity of a potable water be less than 0.3 NTU (nephelometric turbidity units) and less than 1 NTU
under special conditions. The suspended particles clouding the water may be due to such inorganic substances as clay, rock flour, silt, calcium carbonate, silica, iron, manganese, sulfur, or industrial wastes. Again, the clouding may be caused by organic substances such as various microorganisms, finely divided vegetable or animal matter, grease, fat, oil, and others.

While turbidity may be due to a single foreign substance in water, chances are it is probably due to a mixture of several or many substances. These particles may range in size from fine colloidal materials to coarse grains of sand that remain in suspension only as long as the water is agitated. Those particles which quickly sink to the bottom are usually called sediment. There are, however, no hard and fast rules for classifying such impurities. Water from a swiftly flowing river or stream can contain a considerable amount of sediment. In contrast, water taken from a lake or pond is usually much clearer. In these quiet, nonflowing waters there is greater opportunity for settling action. Thus all but very fine particles sink to the bottom. Least apt to contain sediment are wells and springs. Sediment is generally strained from these waters as they percolate through sand, gravel and rock formations. Turbidity varies tremendously even within these various groupings. Some rivers and streams have water that appears crystal clear with just trace amounts of turbidity in them, especially at points near their sources. These same moving waters may contain upwards of 3,000 NTUs at other points in their course. Again, there are significant fluctuations in the amount of turbidity in a river at different times in a year.

Heavy rainfalls, strong winds, and convection currents can greatly increase the turbid state of both lakes and rivers. Warm weather and increases in the temperature can also add to the problem. For with warmer weather, microorganisms and aquatic plants renew their activity in the water. As they grow and later decay, these plant and animal forms substantially add to the turbid state of the water. Also, they frequently cause an increase in odor and color problems.

Color
If water is colored, it is less pleasing to the consumer and may be rejected in favor of a drinking water source that is less safe. Color occurs most frequently in surface water due to the decay of organic material. Color can be measured in the laboratory and, generally, a measurement of 15 color units or higher is objectionable.

Taste and Odor
The taste and odor of water are determined by the physical and chemical characteristics of water. Taste and odors can be caused by temperature, chemicals, minerals, decaying matter, or dissolved gases. The most common cause of odor in drinking water is the presence of hydrogen sulfide, iron, or sulfur-reducing bacteria. However, most contaminants do not impart either and cannot be detected by just smelling or looking at a glass of water.

In a distribution system, the corrosion of pipe materials can also cause taste and odor. Even though taste and odor are more of an aesthetic concern than a health related one, their presence may be indicative of other contaminants harmful to public health.

Chemical Characteristics
Although the physical characteristics exhibited by the source water are readily discernable by sight, smell and taste, the chemical composition of water can, with a few exceptions, be determined only through chemical analysis. Consequently, laboratory testing is necessary. The importance of each chemical substance depends on the kind and amount of that substance found in the water and on the use for which the water is intended. The strictest standards apply to
surface water used as a public drinking water supply. Chemical characteristics are broken down into three areas: inorganics, organics and minerals.

- **Inorganics** chemicals (IOC) include metals such as arsenic, lead and copper.
- **Organic chemicals** (OC) include: volatile organics (VOC) such as trichloroethylene and benzene; and synthetic organics (SOC) such as pesticides and aldicarb.
- **Mineral constituents** include alkalinity, calcium, chloride, copper, foaming agents, iron, magnesium, manganese, pH, sodium, sulfate, zinc, specific conductance, total dissolved solids, and hardness (calcium and magnesium).

Some of the more troublesome naturally occurring chemical constituents found in source waters are: calcium and magnesium (hardness), iron and manganese, hydrogen sulfide, nitrate, arsenic, sulfate and radiological contaminants.

pH
The acidic or basic nature of a solution is expressed as the pH. The pH scale ranges from 0 to 14, with 7 being neutral. Numbers below 7 are acidic and numbers above 7 are basic.

Natural waters rarely have a pH less than 6.0 or greater than 9.0. Treated water is usually between pH 6.5 and 8.5. At values less than 6.5, water can be corrosive causing the release of toxic metals into the water from piping. Higher pH can cause scaling or reduce the efficiency of chlorine.

Hardness
The term hardness may be one of the oldest terms used to characterize a water supply. The term was initially used to describe the difficulty in producing soapsuds in water. Water that required a lot of soap to produce suds was termed hard water, whereas water that easily produced suds was considered soft. If you have soft water, you might notice it takes a long time to rinse the soap off your hands. Soft water reacts with soap to produce a residue that feels like it is difficult to wash off.

Hardness is caused by the presence of magnesium and calcium deposits in water. The terms soft water and hard water are relative. Water is said to be soft if it has a low concentration of calcium and magnesium, and said to be hard if it has a high concentration of calcium and magnesium.

Typically, groundwater is harder than surface water.

Hard water can lead to calcium carbonate (CaCO₃) scale in hot water heaters and boilers. Low hardness contributes to the corrosive tendencies of water.

Water hardness is expressed in mg/L of CaCO₃. mg/L is equivalent to **parts per million (ppm)**. Hardness can also expressed in **grains per gallon (gpg)**; 1 gpg = 17.1 mg/L.

Table A: Hardness Scale

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft water</td>
<td>0-75 mg/L</td>
</tr>
<tr>
<td>Moderately Hard</td>
<td>75-150 mg/L</td>
</tr>
<tr>
<td>Hard</td>
<td>150-300 mg/L</td>
</tr>
<tr>
<td>Very Hard</td>
<td>Over 300 mg/L</td>
</tr>
</tbody>
</table>
Hardness is not considered a health hazard. However, at levels of 200-300 mg/L or higher, it is common practice to soften the water for household use.

Alkalinity
Alkalinity is defined as the capacity of water to resist pH change. The term “to buffer” is used to describe this process. So water with significant alkalinity can buffer or resist pH change. Since a stable pH is desirable for smooth and consistent performance of several treatment processes, it is desirable to have significant alkalinity. Alkalinity of about 80 mg/L will provide adequate buffering capacity.

Most of the alkalinity is provided by carbonate and bicarbonate compounds. Alkalinity is expressed as mg/L of CaCO₃. Typically, groundwater will have adequate alkalinity but surface water sources usually have very low alkalinity and the pH can easily change. Alkalinity does not pose a health risk.

Iron and Manganese
Iron and manganese are common metals found in the earth’s crust. Water percolating through soil and rock can dissolve minerals containing iron and manganese and hold them in solution.

Iron will cause reddish-brown staining of laundry, porcelain, dishes, utensils and even glassware. Manganese causes a brownish-black stain. Soaps and detergents do not remove these stains, and the use of chlorine bleach may intensify the stains. At elevated levels, iron and manganese deposits may build up in pipelines, pressure tanks, water heaters, and water softeners. These deposits reduce the flow and pressure in water supply lines. Iron and manganese accumulations become an economic problem when deposits become serious enough to require replacement of piping and treatment equipment.

Many groundwater supplies in West Virginia have high levels of iron and manganese. The secondary MCL for iron is 0.3 mg/L and 0.05 mg/L for manganese. These levels correspond to approximate concentrations at which iron and manganese will cause aesthetic problems such as colored water, turbidity, staining, and bad taste.

Hydrogen Sulfide (H₂S)
Although H₂S gas is associated with groundwater supplies more often that with surface waters, it can also occur in lakes and reservoirs under ice cover in winter. It produces the offensive rotten egg or sulfur water odor and taste found in some groundwater and can affect the taste of coffee, ice cubes, and many foods prepared with water containing it. Silverware washed in water containing H₂S can turn black. In some cases, the odor may be noticeable only when the water is initially turned on or when hot water is used. Heat forces the gas into the air and may cause the odor to be especially offensive in a shower. Occasionally, a hot water heater is a source of H₂S odor. H₂S is a corrosive gas that forms sulfuric acid, which is corrosive to metals such as iron, steel, copper and brass.

<table>
<thead>
<tr>
<th></th>
<th>Range of concentrations typically found in groundwater</th>
<th>Range of concentrations typically found in surface water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Hardness</td>
<td>300-400 ppm</td>
<td>75 - 200 ppm</td>
</tr>
</tbody>
</table>
Alkalinity 250-350 ppm 45 - 250 ppm
Dissolved Oxygen near 0 2 - 14 ppm
Carbon Dioxide 1 - 10ppm Low
Calcium Hardness High sometimes high, usually low
Magnesium Hardness tends to be high sometimes high, usually low

Biological Characteristics

A variety of aquatic organisms are routinely found in raw water sources. These include tiny microorganisms, such as bacteria, protozoa, and viruses, and a variety of visible organisms, such as algae, fresh water shrimp, and snails.

Although most do not pose a health risk, the presence of some microorganisms in drinking water can be devastating. In fact, providing drinking water that is microbiologically safe is the primary goal of all water providers.

As a general rule, surface water sources are more likely to contain greater numbers and more diverse populations of microorganisms than groundwater sources. This is because surface water can easily pick up microorganisms from contaminated areas as it flows across the earth’s surface. On the other hand, the filtering action of aquifer material results in fewer microorganisms in groundwater. However, shallow wells and unprotected wellheads can provide an opportunity for contaminated surface water to enter the groundwater. Consequently, groundwater cannot be assumed to be free of microorganisms. Disease-causing organisms are called pathogens. Water-borne pathogens include bacteria, protozoa and viruses. These pathogens can be transmitted from person to person through fecal contamination of drinking water. Consequently, disinfection is generally required for surface water sources and may be necessary for groundwater sources if they become contaminated.

Bacteria

Bacteria are single-celled organisms ranging in size from 0.5 - 2 microns in diameter and about 1-10 microns long. A micron is a metric unit of measurement equal to 1 thousandth of a millimeter. To visualize the size of bacteria, consider that it would take approximately 1,000 bacteria lying side by side to reach across the head of a straight pin. Bacteria are among the most common microorganisms in water. Typhoid fever and cholera are examples of bacterial waterborne diseases. Most bacterial pathogens are easily controlled with normal disinfection processes.

Protozoa

Protozoa are single-celled organisms, several hundred times larger than bacteria. They range in size from 4 microns to 500 microns. Two species of protozoa, Cryptosporidium and Giardia have been found to be the cause of waterborne gastrointestinal disease outbreaks in the U.S. Both have been found in Alaskan waters. Protozoan go through a life cycle, one phase of which results in an extremely resistant form that makes them very difficult to control with normal disinfection.

Viruses

Viruses are extremely tiny microorganisms (hundreds of times smaller than bacteria) that live parasitically inside other cells. Pathogenic viruses are responsible for many waterborne diseases
such as viral gastroenteritis, smallpox, poliomyelitis (polio) and infectious hepatitis. The common cold is caused by viruses, but they are not transmitted by water.

Other Organisms Found in Water Sources

Algae
Algae, small aquatic, plant-like organisms are frequently found in surface water supplies but not in groundwater because they require sunlight to survive. Algae contribute to taste and odor problems in finished drinking water. These problems are caused by natural chemicals produced by the algae and by chemicals released when algae cells die.

The earthy, musty taste and smell of the drinking water is related to two naturally occurring compounds, geosmin and 2-methylisoborneol. Research shows two commonly encountered microorganisms, actinomycetes (bacteria) and cyanophytes (bluegreen algae) produce these compounds as metabolic byproducts. An increase in these organisms will have a consequential increase in the taste and odor complaints.

The problem results from a build-up during the warm summer months of blue-green algae which contains a naturally occurring compound called geosmin. In the past, the algal problem has been of short duration and is usually dispersed by a sudden drop in water temperature resulting in replacement of surface water. It can last longer if the weather is particularly dry and sunny.

Iron Bacteria
One special group of bacteria, iron bacteria, causes problems with water supplies. If iron is present, it will promote the growth of these bacteria. Iron bacteria metabolize iron and will flourish when iron levels are high. During this metabolic process the bacteria will produce byproducts that give the water a metallic taste. Iron bacteria can also cause red water, clog well screens and reduce water production. If reddish or green slime builds up in your toilet flush tank you probably have an iron bacteria problem. Iron bacteria problems are very hard to eliminate. High dosages of chlorine must be used throughout the plumbing system to kill all of the bacteria. It may be necessary to feed chlorine continuously to prevent regrowth. A filter alone will not solve this problem.

Sulfur Bacteria
Once this mat of iron bacteria is established on steel pipes, such as the well casing, it may provide a haven for sulfur bacteria, another troublesome microorganism. Some sulfur bacteria convert sulfides to elemental sulfur, which combines with bacterial filaments to clog pipes. Another group of sulfur bacteria generate hydrogen sulfide gas, which is corrosive to pipes and has a foul smell like rotten eggs. Certain sulfur bacteria may produce sulfuric acid that can also cause corrosion of pipes. As mentioned above, the slime mat produced by the iron bacteria provides a favorable environment for the sulfur bacteria. This slime mat also encloses and supports sites of corrosion, which may be the cause of the odor, taste, and staining problems commonly encountered with well water.

Zebra Mussels
Zebra Mussels (Dreissena polymorpha) are small clam shells (1/2 - 2 inches) which attach to any solid object with tufts of fiber called "byssal threads." They are native to the Caspian Sea region of Asia, and were introduced into North America in the mid 1980's via transoceanic ships that discharged ballast water into Lake St. Claire, near Detroit. Tolerant of a wide range of
environmental conditions, zebra mussels have extended their range to parts of all the Great Lakes and the much of the Mississippi River, and are beginning to infest inland lakes as well.

Water treatment plants are experiencing reductions in their pumping ability due to zebra mussels clogging the intake pipes. Since the mussels filter water so effectively, they increase the water's clarity. This in turn results in enhanced growth of aquatic weeds, which has led to taste and odor problems in drinking water supplies. This has necessitated in more expensive and aggressive water treatment procedures. They are also known to increase the rate of corrosion of iron and steel structures at the point of attachment.

Water plants are trying to control zebra mussels by certain types of chemical treatment, such as chlorine (Cl_2), potassium permanganate (KMnO_4), and ozone (O_3).

Radiological Characteristics

Although the presence of radiological elements, or radionuclides, in drinking water may be attributed to human activities, they are most often a result of dissolution of naturally occurring radioactive elements in rock formations such as granites. Examples of radionuclides found in drinking water include radium 226, radium 228, uranium, and radon. When consumed at high levels, these radioactive contaminants are known to cause cancer in humans.
DRINKING WATER MICROBIOLOGY

Disease-causing Organisms in Drinking Water
Regardless of any other factors, water piped into the home must be potable. To be potable it should be completely free of pathogenic or disease-causing organisms. Water is the breeding ground for an almost unbelievably large variety of organisms. Water does not produce these organisms. It merely is an ideal medium in which they can grow. These organisms gain entry into water through a variety of sources. They enter water from natural sources, surface drainage, and sewage. Many of the organisms in water are harmless. In fact, they are extremely beneficial to man. Others have a mild nuisance value. And still others are a source of disease.

In general, those organisms which are potential disease-producers are of primary concern. These are of five types: (1) bacteria, (2) protozoa, (3) worms, (4) viruses, and (5) fungi. The presence of certain organisms of these various types can lead to such infectious diseases as typhoid fever, dysentery, cholera, jaundice, hepatitis, giardiasis, undulant fever and tularemia, as well as other diseases which spread through drinking unsafe water.

Tremendous strides have been made in the control of these diseases within recent years. Much of the credit must go to sanitary engineers for their careful, consistent control of public water supplies. As proof, outbreaks of typhoid fever in either this country or Canada are rare. Natural disasters can play havoc with water supplies, but under routine conditions typhoid is no longer a serious threat. Paradoxically, the freedom from typhoid and other similar water-borne diseases makes necessary even greater vigilance today. For now whole generations have grown up without the opportunity to develop a natural immunity to such diseases. Thus a failure in the protective system could result in far more people succumbing to the disease than in the past.

Microbiological contamination of water has long been a concern to the public. In parts of the United States, concern is increasing due to outbreaks of coliform bacteria, giardiasis, cryptosporidiosis, and hepatitis A. Some of these are bacteria, while others are viruses or protozoa.

Coliform Bacteria
Coliform bacteria live in soil or vegetation and in the gastrointestinal tract of animals. Coliforms enter water supplies from the direct disposal of waste into streams and lakes or from runoff from wooded areas, pastures, feedlots, septic tanks, and sewage plants into streams or groundwater. In addition, coliforms can enter an individual house via backflow of water from a contaminated source or carbon filters.

Coliforms are not a single type of bacteria, but a grouping of bacteria that includes many strains, such as *E. coli*. They are ubiquitous in nature, and many types are harmless. Therefore, it is not definitive that coliform bacteria will cause sickness. Many variables such as the specific type of bacteria present, and someone’s own immune system’s effectiveness will determine if there will be a sickness. In fact, many people become immune to bacteria that are present in their own water. Guests on the other hand, may not have developed an immunity to the water and may experience some gastrointestinal distress such as diarrhea or gastroenteritis.

Total coliforms are the standard by which microbial contamination is measured. Coliforms will be one of the first bacteria present in the water should contamination occur, and they will be in much larger quantities than some pathogenic microbes that may be present. Therefore, coliforms
act as indicators of possible contamination. The presence of coliform bacteria does not necessarily mean that pathogenic microbes are also present. However, if large coliform quantities are detected, the presence of other microbes should be checked for.

Giardia Lamblia

Giardia has become more prevalent in the past few years as a waterborne disease, and a few large outbreaks that have occurred in the U.S. *Giardia* are flagellated protozoa that are parasitic in the intestines of humans and animals. They have two stages, one of which is a cyst form that can be ingested from contaminated water. Once the cyst enters the stomach, the organism is released into the gastrointestinal tract where it will adhere to the intestinal wall. Eventually the protozoa will move into the large intestine where they encyst again and are excreted in the feces and back into the environment.

Once in the body, the *Giardia* causes giardiasis, a disease characterized by symptoms such as diarrhea, abdominal cramps, nausea, weight loss, and general gastrointestinal distress. These symptoms last for about a week, however some people can undergo a more chronic infection with similar symptoms and an even greater degree of weight loss. Giardiasis is rarely fatal and can be treated medicinally by quinacrine, metronidazole, and furazolidone.

Giardia enters the water supply via contamination by fecal material. The fecal material can enter the water from:

- Sewage discharged into the water via cross contamination of sewage and water lines;
- Sewage directly discharged from small sewage plants into lakes or streams;
- Sewage discharged into lakes or streams from cabin toilets;
- Animals carrying the cysts, depositing their fecal material directly into the water; and,
- Rainfall moving the cysts deposited from animals on the soil into a body of water.

Once in the water, unsuspecting hikers or campers may drink infected water, exposing themselves to the cysts. Water from these lakes or streams may also be transported to municipal water supplies. If the municipal system uses filtration in addition to chlorination, the cysts should be removed. If chlorination is used without filtration, the chance for a *Giardia* infection increases. It is estimated that 20-65 million Americans are at risk due to this lack of filtration of surface water. It has been suggested that 40-45% of *Giardia* cases are associated with exposure to unfiltered water. Other sources of exposure include unsanitary conditions at day care facilities, exposure while traveling in developing countries, hikers or campers drinking infected surface water, and sexual practices involving fecal exposure.

Cryptosporidium

Cryptosporidium parvum is a protozoan parasite that causes cryptosporidiosis, which has gained notoriety in the past years. In 1993, over 400,000 people in Milwaukee, Wisconsin became ill with it after drinking contaminated water. Since this outbreak, there has been a greater impetus to remove the Cryptosporidium from municipal water supplies.

Cryptosporidium is spread by the transmission of oocysts via drinking water which has been contaminated with infected fecal material. Oocysts from humans are infective to humans and many other mammals, and many animals act as reservoirs of oocysts which can infect humans. Once inside of its host, the oocyst breaks, releasing four movable spores that attach to the walls
of the gastrointestinal tract, and eventually form oocysts again that can be excreted. Symptoms occur 2 to 10 days after infection. These symptoms include diarrhea, headache, abdominal cramps, nausea, vomiting, and a low fever. There is no treatment against the protozoa, although it is possible to treat the symptoms. After about 1-2 weeks, the symptoms subside as the immune system stops the infection. However, for persons with a compromised immune system such as infants, seniors, those with AIDS, or transplant patients, cryptosporidiosis may become life threatening.

Cryptosporidium infected fecal material enters the water supply either from cross contamination of sewage lines with water lines, or surface water infected with contaminated animal waste. Water treatment processes that utilize coagulation, sedimentation, filtration, and chlorination may remove it. However, due to its small size and its resistance to chlorination, these treatments may not work.

Hepatitis A
Hepatitis A is an enteric virus that is very small. It can be transferred through contaminated water, causing outbreaks. The virus is excreted by a person carrying it, and if the sewage contaminates the water supply, then the virus is carried in the water until it is consumed by a host. Symptoms such as an inflamed liver, accompanied by lassitude, anorexia, weakness, nausea, fever and jaundice are common. A mild case may only require a week or two of rest, while a severe case can result in liver damage and possible death. Generally, water systems utilize chlorination, preceded by coagulation, flocculation, settling and filtration to remove the virus.
A variety of aquatic organisms are routinely found in raw water sources. These include tiny microorganisms, such as bacteria, protozoa, and viruses, and a variety of visible organisms, such as algae and zebra mussels.

Although most do not pose a health risk, the presence of some microorganisms in drinking water can be devastating. In fact, providing drinking water that is microbiologically safe is the primary goal of all water providers.

As a general rule, surface water sources are more likely to contain greater numbers and more diverse populations of microorganisms than groundwater sources. This is because surface water can easily pick up microorganisms from contaminated areas as it flows across the earth’s surface. On the other hand, the filtering action of aquifer material results in fewer microorganisms in groundwater. However, shallow wells and unprotected wellheads can provide an opportunity for contaminated surface water to enter the groundwater. Consequently, groundwater cannot be assumed to be free of microorganisms. Disease-causing organisms are called pathogens. Water-borne pathogens include bacteria, protozoa and viruses. These pathogens can be transmitted from person to person through fecal contamination of drinking water. Consequently, disinfection is generally required for surface water sources and may be necessary for groundwater sources if they become contaminated.

Coliform Bacteria
Coliform bacteria live in soil or vegetation and in the gastrointestinal tract of animals. Coliforms enter water supplies from the direct disposal of waste into streams and lakes or from runoff from wooded areas, pastures, feedlots, septic tanks, and sewage plants into streams or groundwater. In addition, coliforms can enter an individual house via backflow of water from a contaminated source or carbon filters.

Coliforms are not a single type of bacteria, but a grouping of bacteria that includes many strains, such as E. coli. They are ubiquitous in nature, and many types are harmless. Therefore, it is not definitive that coliform bacteria will cause sickness. Many variables such as the specific type of bacteria present, and someone’s own immune system’s effectiveness will determine if there will be a sickness. In fact, many people become immune to bacteria that are present in their own water. Guests on the other hand, may not have developed an immunity to the water and may experience some gastrointestinal distress such as diarrhea or gastroenteritis.

Total coliforms are the standard by which microbial contamination is measured. Coliforms will be one of the first bacteria present in the water should contamination occur, and they will be in much larger quantities than some pathogenic microbes that may be present. Therefore, coliforms act as indicators of possible contamination. The presence of coliform bacteria does not necessarily mean that pathogenic microbes are also present. However, if large coliform quantities are detected, the presence of other microbes should be checked for.

Most bacterial pathogens are easily controlled with normal disinfection processes.

Giardia lamblia
Giardia has become more prevalent in the past few years as a waterborne disease, and a few large outbreaks that have occurred in the U.S. Giardia are flagellated protozoa that are parasitic
in the intestines of humans and animals. They have two stages, one of which is a cyst form that can be ingested from contaminated water. Once the cyst enters the stomach, the organism is released into the gastrointestinal tract where it will adhere to the intestinal wall. Eventually the protozoa will move into the large intestine where they encyst again and are excreted in the feces and back into the environment.

Once in the body, the *Giardia* causes giardiasis, a disease characterized by symptoms such as diarrhea, abdominal cramps, nausea, weight loss, and general gastrointestinal distress. These symptoms last for about a week, however some people can undergo a more chronic infection with similar symptoms and an even greater degree of weight loss. Giardiasis is rarely fatal and can be treated medicinally by quinacrine, metronidazole, and furazolidone.

Giardia enters the water supply via contamination by fecal material. The fecal material can enter the water from:
- Sewage discharged into the water via cross contamination of sewage and water lines;
- Sewage directly discharged from small sewage plants into lakes or streams;
- Sewage discharged into lakes or streams from cabin toilets;
- Animals carrying the cysts, depositing their fecal material directly into the water; and,
- Rainfall moving the cysts deposited from animals on the soil into a body of water.

Once in the water, unsuspecting hikers or campers may drink infected water, exposing themselves to the cysts. Water from these lakes or streams may also be transported to municipal water supplies. If the municipal system uses filtration in addition to chlorination, the cysts should be removed. If chlorination is used without filtration, the chance for a *Giardia* infection increases. It is estimated that 20-65 million Americans are at risk due to this lack of filtration of surface water. It has been suggested that 40-45% of *Giardia* cases are associated with exposure to unfiltered water. Other sources of exposure include unsanitary conditions at day care facilities, exposure while traveling in developing countries, hikers or campers drinking infected surface water, and sexual practices involving fecal exposure.

Cryptosporidium

Cryptosporidium parvum is a protozoan parasite that causes cryptosporidiosis, which has gained notoriety in the past years. In 1993, over 400,000 people in Milwaukee, Wisconsin became ill with it after drinking contaminated water. Since this outbreak, there has been a greater impetus to remove the Cryptosporidium from municipal water supplies.

Cryptosporidium is spread by the transmission of oocysts via drinking water which has been contaminated with infected fecal material. Oocysts from humans are infective to humans and many other mammals, and many animals act as reservoirs of oocysts which can infect humans. Once inside of its host, the oocyst breaks, releasing four movable spores that attach to the walls of the gastrointestinal tract, and eventually form oocysts again that can be excreted. Symptoms occur 2 to 10 days after infection. These symptoms include diarrhea, headache, abdominal cramps, nausea, vomiting, and a low fever. There is no treatment against the protozoa, although it is possible to treat the symptoms. After about 1-2 weeks, the symptoms subside as the immune system stops the infection. However, for persons with a compromised immune system such as infants, seniors, those with AIDS, or transplant patients, cryptosporidiosis may become life threatening.
Cryptosporidium infected fecal material enters the water supply either from cross contamination of sewage lines with water lines, or surface water infected with contaminated animal waste. Water treatment processes that utilize coagulation, sedimentation, filtration, and chlorination may remove it. However, due to its small size and its resistance to chlorination, these treatments may not work.

Protozoa
Protozoan go through a life cycle, one phase of which results in an extremely resistant form that makes them very difficult to control with normal disinfection.

Hepatitis A
Hepatitis A is an enteric virus that is very small. It can be transferred through contaminated water, causing outbreaks. The virus is excreted by a person carrying it, and if the sewage contaminates the water supply, then the virus is carried in the water until it is consumed by a host. Symptoms such as an inflamed liver, accompanied by lassitude, anorexia, weakness, nausea, fever and jaundice are common. A mild case may only require a week or two of rest, while a severe case can result in liver damage and possible death. Generally, water systems utilize chlorination, preceded by coagulation, flocculation, settling and filtration to remove the virus.

Iron Bacteria
One special group of bacteria, iron bacteria, causes problems with water supplies. If iron is present, it will promote the growth of these bacteria. Iron bacteria metabolize iron and will flourish when iron levels are high. During this metabolic process the bacteria will produce byproducts that give the water a metallic taste. Iron bacteria can also cause red water, clog well screens and reduce water production. If reddish or green slime builds up in your toilet flush tank you probably have an iron bacteria problem. Iron bacteria problems are very hard to eliminate. High dosages of chlorine must be used throughout the plumbing system to kill all of the bacteria. It may be necessary to feed chlorine continuously to prevent regrowth. A filter alone will not solve this problem.

Sulfur Bacteria
Once this mat of iron bacteria is established on steel pipes, such as the well casing, it may provide a haven for sulfur bacteria, another troublesome microorganism. Some sulfur bacteria convert sulfides to elemental sulfur, which combines with bacterial filaments to clog pipes. Another group of sulfur bacteria generate hydrogen sulfide gas, which is corrosive to pipes and has a foul smell like rotten eggs. Certain sulfur bacteria may produce sulfuric acid that can also cause corrosion of pipes. As mentioned above, the slime mat produced by the iron bacteria provides a favorable environment for the sulfur bacteria. This slime mat also encloses and supports sites of corrosion, which may be the cause of the odor, taste, and staining problems commonly encountered with well water.
CHEMISTRY

pH

pH is defined as the "negative log of the hydrogen ion concentration." This is actually a mathematical determination and is expressed as pH = -\log_{10} [H^+]. More simply, pH is a measure of the hydrogen ion concentration in water and can be considered as an “Index” of the amount of hydrogen ions present in a substance. This “Index” is important because it can be used quickly to determine if a substance is acidic, basic or neutral. The pH scale is a numerical scale from 0 to 14, with 7 considered neutral. At a pH below 7, the water is acidic. An acidic solution is one that has a greater concentration of hydrogen ions than hydroxyl ions. At a pH above 7, the water is basic. A basic solution is one that has a greater concentration of hydroxyl ions than hydrogen ions. Since pH is measured as a logarithm, a change of one (1) pH unit means a ten-fold increase or decrease in the hydrogen ion concentration. For example, pH 8.0 is ten times more basic than pH 7.0; pH 9.0 is ten times more basic than a pH 8.0 and pH 9.0 is 100 times more basic than pH 7.0. We see that as the pH increases, the number of hydrogen ions DECREASES. Natural waters rarely have a pH less than 6.0 or greater than 9.0. Treated water is usually between pH 6.5 and 8.5. The table below gives some common acids and bases and their pH values:

<table>
<thead>
<tr>
<th>I. Acids</th>
<th>pH</th>
<th>Bases</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrochloric acid</td>
<td>1.0</td>
<td>Sodium bicarbonate</td>
<td>8.4</td>
</tr>
<tr>
<td>Sulfuric acid</td>
<td>1.2</td>
<td>Ammonium hydroxide</td>
<td>9.2</td>
</tr>
<tr>
<td>Acetic acid</td>
<td>2.9</td>
<td>Sodium carbonate</td>
<td>11.4</td>
</tr>
<tr>
<td>Alum</td>
<td>3.2</td>
<td>Lime</td>
<td>12.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sodium hydroxide</td>
<td>13.0</td>
</tr>
</tbody>
</table>

pH Control

There are a number of pH increase treatment options available to small systems to increase pH.

Lime

Lime or limestone is calcium carbonate (CaCO₃) and can be used to raise pH. As the lime is added to the water, it dissolves the CaCO₃. Through a chemical reaction, similar to the CO₂/H₂CO₃ resulting in a higher pH.

A possible drawback to the use of a lime is that calcium ions are also released into the water which increases hardness and scaling.

Soda Ash

Soda ash (Na₂CO₃) can also be used to raise the pH. The chemistry is similar to the use of lime and causes a higher pH. Soda ash is normally fed into the water system as a solution using a liquid chemical feed pump. The feed equipment is almost the same as that used to feed hypochlorites.

Sodium Hydroxide

Sodium hydroxide (NaOH), commonly called caustic soda, is readily soluble in water and a very strong base. It can be used to raise pH in water systems, but it is extremely corrosive and can be very dangerous if mishandled. It is critical that workers who handle NaOH be well trained.

Diluted NaOH (30% or 50%) is normally fed into the water system using a liquid chemical feed pump similar to ones used to feed hypochlorites.
Hardness
The hardness of water relates to the amount of calcium, magnesium and sometimes iron in the water. The more minerals present, the harder the water. Soft water may contain sodium and other minerals or chemicals; however, it contains very little calcium, magnesium or iron. Many people prefer soft water because it makes soap lather better, gets clothes cleaner and leaves less of a ring around the tub. Some municipalities and individuals remove calcium and magnesium, both essential nutrients, and add sodium in an ion-exchange process to soften their water.

Alkalinity
Alkalinity is the capacity of water to neutralize acids. Alkalinity is the result of the water's content of carbonate, bicarbonate, and hydroxide. It is expressed as milligrams per liter equivalent calcium carbonate. Alkalinity is the measured by titrating the sample to a pH of 4.5.

<table>
<thead>
<tr>
<th>Reduces Alkalinity</th>
<th>Increases Alkalinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum sulfate (alum)</td>
<td>Calcium hypochlorite (HTH)</td>
</tr>
<tr>
<td>Carbon dioxide</td>
<td>Caustic soda (sodium hydroxide)</td>
</tr>
<tr>
<td>Chlorine gas</td>
<td>Hydrated lime (calcium hydroxide)</td>
</tr>
<tr>
<td>Ferric chloride</td>
<td>Soda ash (sodium carbonate)</td>
</tr>
<tr>
<td>Ferric sulfate</td>
<td></td>
</tr>
<tr>
<td>Sulfuric acid</td>
<td></td>
</tr>
</tbody>
</table>

Nitrate
High levels are usually caused by concentrated sources of nitrogen such as animal feedlots, septic systems, or heavily fertilized cropland. Nitrates are the only chemical contaminant that represents an immediate health risk. High nitrate-containing water is a serious health concern for pregnant women and infants under the age of 6 months. Infants that consume water high in nitrates are susceptible to a life-threatening disease called methemoglobinemia or “blue baby” syndrome. Babies with this condition become oxygen starved because their red blood cells are unable to carry oxygen properly. This reduction of oxygen uptake in the bloodstream gives the skin a blue tint. Infants become less susceptible to the effects of nitrates after six months of age. The MCL for nitrate nitrogen is 10.0 mg/L and the MCL for nitrite is 1 mg/L. PWSs that exceed this level are required to obtain a new water source or treat their water.

Hydrogen Sulfide
Water containing hydrogen sulfide, commonly called sulfur water, has a distinctive "rotten egg" or swampy odor. Hydrogen sulfide is a gas formed by the decay of organic matter such as plant material. It is typically found in groundwater containing low levels of dissolved oxygen and a pH less than 6.0. Sulfur problems occur less frequently in surface waters because flowing water is aerated naturally so that the hydrogen sulfide reacts with oxygen and escapes as a gas or settles as a solid.

Sulfur bacteria are also found in many drinking water wells and household distribution systems. These harmless bacteria use natural sulfur compounds in water as a food source, thereby producing hydrogen sulfide. Although sulfur bacteria pose no health risk to humans, their presence in drinking water may cause objectionable tastes and odors.
A water heater may also produce a sulfur odor. The magnesium rod present in many water heaters can chemically change naturally occurring sulfates in water to hydrogen sulfide. If this occurs, the magnesium rod can be replaced with an aluminum rod or simply removed, although removing the rod may nullify the warranty on the water heater.

Hydrogen sulfide is not regulated, however, because it is considered a nuisance chemical and does not pose a health risk at concentrations typically present in household water. Concentrations high enough to be a health risk also make the water unpalatable. Conversely, concentrations as low as 0.5 milligrams per liter (mg/L) can add objectionable taste and a rotten egg odor to drinking water.

Continuous chlorination is a very common and effective method for oxidizing hydrogen sulfide, especially if the water pH is 6.0-8.0. Chlorine has the secondary advantage of being lethal to bacteria so it typically follows other treatment options to maintain a chlorine residual and prevent bacterial activity. Chlorine is usually administered as sodium hypochlorite, which reacts with sulfide, hydrogen sulfide, and bisulfide to form compounds that do not cause foul taste or odors in drinking water.

Another common treatment for sulfur water is aeration. Hydrogen sulfide is physically removed by agitating the water via bubbling or cascading and then separating or "stripping" the hydrogen sulfide in a container. The undesired hydrogen sulfide is removed as a volatile gas by venting it into a waste pipe or to the outdoors. Aeration is most effective when hydrogen sulfide concentrations are lower than 2.0 mg/L. At higher concentrations, this method may not remove all of the offensive odor unless the air is used to oxidize hydrogen sulfide chemically into solid sulfur, which is then filtered.
LEAD AND COPPER

Although copper is an essential micronutrient and is required by the body in very small amounts, excess copper in the human body can cause stomach and intestinal distress such as nausea, vomiting, diarrhea and stomach cramps. People with Wilson's disease, a rare genetic disorder, are more sensitive to the effects of copper.

Lead is a cumulative poison, meaning it accumulates in the body until it reaches toxic levels. Chronic exposure to low levels of lead over an extended period of time can have severe effects. Excess lead in the human body can cause serious damage to the brain, kidneys, nervous system and red blood cells. Young children, infants and fetuses are particularly vulnerable to lead poisoning. Since lead is accumulated and stored in the bones, continued exposure will allow blood lead levels to affect nerve tissue. This can then irreversibly impair a child's mental and physical development, resulting in learning disabilities or stunted growth.

Limits
The current enforceable action levels for copper is 1.3 mg/L (or 1.3 ppm) and for lead is 0.015 mg/L or 15 parts per billion (ppb).

Lead and Copper Removal Treatment
Each public water system must now target high-risk households (based on materials used in the delivery system and other factors) and analyze tap water samples from these households for lead and copper.

Lead and Copper Corrosion Control Options
Technically, the regulations state that a system will perform corrosion control studies that evaluate the following corrosion control treatments, either one or a combination of:
 a. Alkalinity and pH adjustment;
 b. Calcium hardness adjustment; and/or,
 c. The addition of a phosphate or silicate based corrosion inhibitor at a concentration sufficient to maintain an effective residual concentration in all test tap samples.
This section is a brief overview of chemistry with respect to water treatment. Greater detail is provided in appropriate sections.

Aeration is the process of adding air to water either by passing air through water or by passing water through air resulting in degasification. Volatile compounds exist in lower concentrations in air than in water, so they tend to leave the water and move into the air. Examples of aeration in a water system are:

- Release taste and odor causing substances such as hydrogen sulfide;
- Removes substances that may add to treatment costs such as carbon dioxide;
- Removes radon gas; and
- Remove volatile organic compounds.

Oxidation is the addition of oxygen and/or the removal of hydrogen or the removal of electrons to create a more stable substance. An example would be the oxidization of soluble minerals such as iron and manganese into solids to ease removal by traditional treatment.

Aeration and oxidation can be accomplished by the use of:

- Blowers which compress air into the water;
- Cascades and Sprays which are waterfall devices that pass water through air; and,
- Stripping is a combination of both by flowing water over packing and blowing air through the packing.

Coagulation is the both a chemical and physical process of the clumping together of very fine particles (colloids) into larger particles by the use of chemicals. Colloids are very small, finely divided solids that remain dispersed in a liquid for a long time due to their small size and electrical charge. When most of the particles have a negative charge they tend to repel each other and remain suspended.

Factors affecting coagulation:
1. Alkalinity - can be defined as the capacity of the water to neutralize acids based on the content of carbonate, bicarbonate and hydroxide ions and scaled the by the measure of acid added to a liquid to lower the pH to 4.5. The coagulants react with the alkalinity to form floc. For every 1 ppm of alum added, 0.45 ppm of bicarbonate alkalinity is needed for a complete reaction to occur. So, changes in the alkalinity content affect the chemical reaction of the coagulation process.

Examples of treatment chemicals that lower alkalinity are:

- Aluminum Sulfate (Alum)-acidic and corrosive;
- Carbon dioxide-can cause suffocation;
- Chlorine gas- mixes with water or body sweat to form hydrochloric acid;
- Ferric Chloride-can decompose to form hydrochloric acid;
- Ferric Sulfate-acidic when mixed with water; and
- Sulfuric Acid-highly corrosive, burns skin.

Examples of treatment chemicals that raise alkalinity are:
- Calcium hypochlorite (HTH)-gives off chlorine gas, attacks eyes and skin, can cause fire;
- Caustic Soda (Sodium hydroxide)- dissolves skin, reacts with metals, generates heat when mixed with water;
- Hydrated Lime (Calcium hydroxide)- can cause injury to eyes;
- Soda Ash (Sodium carbonate)- mildly alkaline, causes dust; and
- Sodium Aluminate (Soda alum)- noncorrosive, dust problems.

2. As water temperature decreases, the density of the water increases resulting in slowing the settling rate solids or particles.
 - Reactions are more complete and quicker in warm water
 - Coagulant doses may need to be increased in cold water
 - Lower temperatures require higher mixing turbulence
 - Temperature changes are usually slow to occur and so do not require drastic changes

3. pH is the expression of the intensity of the basic or acidic condition of a liquid. Natural waters usually have a pH between 6.5 and 8.5. The best pH for coagulation is between 5.0 and 7.0.

Examples of treatment chemicals that lower pH are:
- Aluminum sulfate (Alum)
- Carbon dioxide
- Chlorine gas
- Ferric Chloride
- Hydorfluosillicic acid
- Sulfuric acid

Examples of treatment chemical that raise pH are:
- Calcium hypochlorite
- Caustic Soda
- Hydrated Lime
- Soda Ash
- Sodium Aluminate
- Sodium hypochlorite

Coagulants are the chemicals that neutralize the electrical charges of fine particles in the water. When using metallic salts, sufficient quantities must be added to the water to exceed the solubility limit of the metal hydroxide creating floc which then adsorbs in the turbidity in the water. The effectiveness of the chemical coagulant used is dependant on the pH, temperature and alkalinity of the water.

Primary coagulants
- Aluminum Sulfate
- Ferrous Sulfate
- Ferric Sulfate
- Ferric Chloride
Primary coagulants/Aids
- Cationic Polymer (positive charge)
- Calcium Hydroxide
- Calcium Oxide
- Sodium Aluminate

Coagulant Aids- used to add density to floc particles to improve settling
- Bentonite
- Calcium Carbonate
- Sodium Silicate
- Anionic Polymer (negative charge)
- Nonionic Polymer (negative and positive charge)

Polymers are synthetic organics referred to as polyelectrolytes. Polymers are classified according to the charge.
- Cationic polymers have a positive charge and are normally fed with metallic coagulants to reduce the amount of chemical needed and reduction of the sludge produced.
- Anionic polymers have a negative charge.
- Nonionic polymers have no preferred charge.

Over feeds of polymer can coat particles and lead to carryover and clog filters.

All colloids are electrically charged but the charge varies based on the type of material. Colloidal charge may change with a change in external conditions. So, both Aluminum and Ferric flocs may be positive or negative.

Flocculation, sedimentation and filtration are mechanical, physical or natural processes to utilized to remove floc or solids from the water. The turbidity of the process effluent is used to indicate the efficiency of the process.

Disinfection is the process designed to kill or inactivate most microorganisms in water, with chlorination being the most common. The factors that effect disinfection are:
- pH - chlorine disinfects much faster at a pH of 7.0 than at a pH of 8.0 or above, because at a level between 5 and 10 hypochlorous acid (free chlorine) and hypochlorite ions form. At a pH of 7.5 approximately 50 % of the chlorine is hypochlorous acid and 50 % is hypochlorite ion.
- Temperature - as the temperature increases the rate of diffusion of the disinfectant through the cell wall increases. The germicidal efficiency increases with temperature as the rate of diffusion increases. At lower temperatures a longer contact time is required to disinfect water.
- Turbidity - excessive turbidity will reduce the efficiency of the disinfecting process. Suspended matter can create a chlorine demand and decrease the effectiveness of the chemical.
- Organic matter - humic acids and bromides in the water can consume great amounts of chlorine and form harmful disinfection byproducts (THMs and HAA5s)
• Reducing Agents - chlorine combines with inorganic agents such as hydrogen sulfide, ferrous iron, manganous ions and nitrite ions and reduces available disinfection chemical.
• Microorganisms - the number and type of microorganisms greatly affect the concentration disinfecting chemical needed. Non-spore forming bacterial are less resistant than spore forming bacteria. Cysts and viruses can be very resistant to certain types of disinfectants

Corrosion is the process where metals are dissolved into surrounding water.

Chemical factors that effect corrosion are:
• Alkalinity - The carbonate and bicarbonate neutralize an acid or base. High concentration of carbonate and bicarbonate in water has a strong tendency to resist a change in pH.
• pH - at levels below 7.0, water tends to be corrosive and at levels above 7.5 water is protective of pipe materials. Very high pH levels have a tendency to deposit excessive amounts of scale
• Dissolved Oxygen - the most corrosive component of water chemistry. Oxygen reacts at both the anode and cathode to accelerate the rate of corrosion. So the higher the concentration of dissolved oxygen present then the greater the tendency for corrosion to occur.
• Dissolved Solids - the higher the dissolved solids content of the water the greater the potential for corrosion due to increased conductivity. A common method to determine TDS is to measure the conductivity of the water.
• Hardness - since hardness is made up of calcium and magnesium ions the most common corrosion control measure is the creation of a calcium carbonate film on the inside of the pipes
• Chloride and Sulfate - these ions keep the hardness ions in solution and inhibit the creation of a protective film. The alkalinity mg/L should be maintained at 5 times the sum of the chloride and sulfate ions mg/L.

Chemical tests used for detection of corrosion:
• Dissolved Oxygen - oxygen must be present for corrosion to occur. If samples are tested at various points in a distribution system you can calculate how much oxygen is used up. Loss could indicate the presence of organic matter or gross corrosion is occurring.
• Marble Test - used to determine the calcium carbonate saturation level.
• Langlier Index - most common index used to indicate how close a waters calcium carbonate content is in equilibrium to the hydrogen ion concentration.

Chemical compounds used for corrosion control:
• Zinc phosphates are capable of forming an effective cathodic film to control corrosion.
• Sodium Polyphosphates reduce corrosion enhancing products by forming positively charged particles of ferric oxide, calcium compounds and metaphosphates. At high pH and low dose they dissolve iron and calcium by a
sequestering mechanism. **Note:** Polyphosphates should be fed before chlorine to effectively sequester iron and manganese due to chlorine’s ability to oxidize.

Softening is the reduction of the hardness of the water. Hardness is caused by the presence of metallic the cations of calcium and magnesium in water. Problems associated with the hardness of the water are: scale formation on fixtures; clogging of pipes; increased use of soap/detergent.

Methods of Softening
1. Chemical precipitation (Lime-soda) - converts hardness causing ions from soluble to solid form at high pH levels.
 - can only reduce hardness to 80 to90 mg/L
 - requires a high degree of control to be efficient
 - creates large quantities of sludge
 - lime converts alkalinity form bicarbonate to carbonate which causes calcium to precipitate out
 - more lime increases the alkalinity to a level where hydroxide becomes present and allows magnesium to precipitate as magnesium hydroxide
 - lime use will remove carbonate hardness
 - sodium use will remove noncarbonate hardnes
 - caustic soda will remove both carbonate and noncarbonate hardness
 - increased sodium chemical feed can increase sodium levels above the recommended 20 mg/L level
 - caustic soda reacts with carbon dioxide and carbonate hardness to create sodium carbonate (soda ash) which will react with the noncarbonate hardness

2. Ion Exchange - Resin is saturated with sodium ions and as hard water passes through the resin hardness ions are exchanged for sodium ions and are left on the resin
 - best applied to waters high in noncarbonate hardness and where total hardness does not exceed 350 mg/L
 - can reduce hardness to 0 mg/L
 - must be backwashed with a sodium solution to remove the calcium and magnesium and recharge with sodium ions.

Note: One result of the addition of treatment chemicals that are sodium based is the increase of sodium released into the water. Sodium content should be monitored for this reason.
Prior to 1990, EPA administered a certification process for chemicals, including phosphates, to be used for potable water treatment. In 1990, the National Sanitation Foundation International (NSF) assumed responsibility for the total certification process. The process involves several steps. The toxicology database and impurity profiles are thoroughly reviewed by NSF's toxicology staff. NSF then audits all manufacturing locations. Samples are taken and analyzed to confirm impurity data submitted on certification applications. Raw materials used in the process are verified against submitted lists and any gaps must be filled. The raw material suppliers are also required to submit detailed information similar to the product application. The NSF certification process includes manufacturing plant inspection, raw material certification and product labeling. The NSF certification process applies to all of a company’s plants and products that could be used in treatment of potable water.
COMMON NAMES & SYMBOLS FOR WATER TREATMENT CHEMICALS

<table>
<thead>
<tr>
<th>Chemical Name</th>
<th>Common Name</th>
<th>Chemical Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum hydroxide</td>
<td>Alum floc</td>
<td>Al(OH)$_3$</td>
</tr>
<tr>
<td>Aluminum sulfate</td>
<td>Filter alum</td>
<td>Al$_2$(SO)$_4$•14H$_2$O</td>
</tr>
<tr>
<td>Ammonia</td>
<td></td>
<td>NH$_3$</td>
</tr>
<tr>
<td>Calcium bicarbonate</td>
<td>Limestone</td>
<td>Ca(HCO$_3$)$_2$</td>
</tr>
<tr>
<td>Calcium carbonate</td>
<td></td>
<td>CaCO$_3$</td>
</tr>
<tr>
<td>Calcium hydroxide</td>
<td>Hydrated lime/slaked lime</td>
<td>Ca(OH)$_2$</td>
</tr>
<tr>
<td>Calcium hypochlorite</td>
<td>HTH</td>
<td>Ca(OCl)$_2$</td>
</tr>
<tr>
<td>Calcium oxide</td>
<td>Quick lime/unslaked lime</td>
<td>CaO</td>
</tr>
<tr>
<td>Calcium sulfate</td>
<td></td>
<td>CaSO$_4$</td>
</tr>
<tr>
<td>Carbon Activated</td>
<td>Carbon</td>
<td>C</td>
</tr>
<tr>
<td>Carbonic acid</td>
<td></td>
<td>H$_2$CO$_3$</td>
</tr>
<tr>
<td>Chlorine</td>
<td></td>
<td>Cl$_2$</td>
</tr>
<tr>
<td>Chlorine dioxide</td>
<td></td>
<td>ClO$_2$</td>
</tr>
<tr>
<td>Copper sulfate</td>
<td>Blue vitriol</td>
<td>CuSO$_4$•5H$_2$O</td>
</tr>
<tr>
<td>Dichloramine</td>
<td></td>
<td>NHCl$_2$</td>
</tr>
<tr>
<td>Ferric chloride</td>
<td></td>
<td>FeCl$_3$•6H$_2$O</td>
</tr>
<tr>
<td>Ferric hydroxide</td>
<td></td>
<td>Fe(OH)$_3$</td>
</tr>
<tr>
<td>Ferric sulfate</td>
<td></td>
<td>Fe(SO$_4$)$_3$•3H$_2$O</td>
</tr>
<tr>
<td>Fluosilicic acid</td>
<td>Hydrofluosilicic acid</td>
<td>H$_2$SiF$_6$</td>
</tr>
<tr>
<td>Hydrochloric acid</td>
<td>Muratic acid</td>
<td>HCl</td>
</tr>
<tr>
<td>Hypochlorus acid</td>
<td></td>
<td>HOCl</td>
</tr>
<tr>
<td>Manganese dioxide</td>
<td></td>
<td>MnO$_2$</td>
</tr>
<tr>
<td>Monochloramine</td>
<td></td>
<td>NH$_2$Cl</td>
</tr>
<tr>
<td>Potassium permanganate</td>
<td></td>
<td>KMNO$_4$</td>
</tr>
<tr>
<td>Sodium bicarbonate</td>
<td>Baking soda</td>
<td>NaHCO$_3$</td>
</tr>
<tr>
<td>Sodium carbonate</td>
<td>Soda ash</td>
<td>Na$_2$CO$_3$</td>
</tr>
<tr>
<td>Nitrogen trichloride</td>
<td></td>
<td>NCl$_3$</td>
</tr>
<tr>
<td>Sodium fluoride</td>
<td></td>
<td>NaF</td>
</tr>
<tr>
<td>Sodium fluosilicate</td>
<td>Sodium silicofluoride</td>
<td>Na$_2$SiF$_6$</td>
</tr>
<tr>
<td>Sodium hydroxide</td>
<td>Caustic soda/Lye</td>
<td>NaOH</td>
</tr>
<tr>
<td>Sodium hypochlorite</td>
<td>Bleach</td>
<td>NaOCl</td>
</tr>
<tr>
<td>Sodium phosphate</td>
<td></td>
<td>Na$_3$PO$_4$•12H$_2$O</td>
</tr>
<tr>
<td>Sodium silicofluoride</td>
<td>Sodium fluosilicate</td>
<td>Na$_2$SiF$_6$</td>
</tr>
<tr>
<td>Sulfuric acid</td>
<td>Oil of vitriol</td>
<td>H$_2$SO$_4$</td>
</tr>
<tr>
<td>Trichloramine</td>
<td>Nitrogen trichloride</td>
<td>NCl$_3$</td>
</tr>
</tbody>
</table>

ACTIVATED CARBON

Activated carbon is a highly porous carbonaceous substance with a wide range of applications in gas, vapor, and liquid treatment. Activated carbon is used successfully today, especially in water treatment to remove organic compounds that impart color, taste and odor to the water. Contaminant removal is achieved through a process called adsorption by which contaminants adhere to the surface of the carbon and are thus removed from the water.

The main objectives of drinking water treatment are to produce high quality water that is safe for human consumption, has aesthetic appeal, conforms to state and federal standards, and is economical in production. One of the tools that helps to achieve these goals is activated carbon.

Activated carbon is useful in drinking water treatment because it acts as an adsorbent, and can effectively remove particles and organics from water. These organics are of great concern in water treatment because they react with many disinfectants, especially chlorine, and cause the formation of disinfection byproducts, DBPs. These DBPs are often carcinogenic and therefore highly undesirable.

Adsorption

Adsorption is the process by which activated carbon removes substances from water. Defined, adsorption is "the collection of a substance onto the surface of adsorbent solids." It is a removal process where certain particles are bound to an adsorbent particle surface by either chemical or physical attraction. Adsorption is often confused with absorption, where the substance being collected or removed actually penetrates into the other solid.

The reason that activated carbon is such an effective adsorbent material is due to its large number of vast pores. These provide a large surface area relative to the size of the actual carbon particle and its visible exterior surface.

Activated carbon uses the physical adsorption process whereby attractive van der Waals forces pull the solute out of solution and onto its surface. Once the solute is bound to the carbon is it considered "removed" from the water.

Activated carbon adsorption proceeds through 3 basic steps

1. Substances adsorb to the exterior of the carbon granules
2. Substances move into the carbon pores
3. Substances adsorb to the interior walls of the carbon

Adsorption efficiency decreases over time and eventually activated carbon will need to be replaced or reactivated.

Operational Considerations

The water industry uses activated carbon in two forms, typically powdered and granular, to deal with a variety of undesirable aspects in raw water.

Powdered activated carbon (PAC) is more commonly used than granular activated carbon to control taste and odor in drinking water treatment. Seasonal application of powdered activated carbon at the raw water intake or rapid mix unit is used by some plants to correct short term raw water quality problems such as algal blooms. PAC is basically used to correct taste and odor
problems which are primarily an aesthetic quality of the water. PAC can be added directly to the water prior to coagulation up until just before the rapid sand filter. The PAC adsorbs contaminants and is then removed by sedimentation or filtration.

Contact time is needed to allow adsorption to occur. The PAC is removed from the water by the processes of coagulation, flocculation, and sedimentation. Once the PAC has been separated from the water it is disposed of along with sedimentation sludge.

Granular activated carbon (GAC) is used in water treatment to remove organic compounds and is typically found in beds or filter columns as a granular activated carbon cap and will treat water continuously when raw water quality problems exist year round. The GAC cap is typically found above the filter media as a distinct layer. In some applications the sand layer can be replaced by GAC. When GAC is used for long term applications it can be more economical since the carbon can be reactivated following decreased adsorption efficiency.

Physical Characteristics
The process of activated carbon generation begins with the selection of a raw carbon source. These sources are selected based on design specifications since different raw sources will produce activated carbon with different properties. Some of the more common raw sources include wood, sawdust, lignite, peat, coal, coconut shells, and petroleum residues.

The process includes first carbonizing the raw material at low temperatures, and then activating the carbon in a high temperature steam process. Any volatile content inside the carbon is burned, leaving a beehive-like structured carbon with a high volume of pores and a large surface area. PAC (powdered activated carbon) is prepared by a pulverizing action, leaving a very fine powder. GAC (granular activated carbon), is in granular form and has great mechanical strength. Characteristics of importance in choosing carbon types include pore structure, particle size, total surface area and void space between particles. The porosity of activated carbon, which is classified by the size of the diameter of the pores, varies from micropores (2 nm), to mesopores (2-50 nm), to macropores (greater than 50 nm). In water treatment, particles of the same size of the pores tend to get stuck and retained by the carbon. Volatile organic chemicals, metals, and some non-polar inorganic chemicals are captured and held strongly by the carbon.

The "spent" carbon, as it is called, is removed and sent for re-activation treatment. This is done primarily with granular activated carbon because PAC particles are too small to be effectively re-activated. This process allows for recovery of approximately 70% of the original carbon. This number also allows for any physically lost in the shipment process. The re-activated carbon is then mixed with a portion of new carbon for higher effectiveness and is then returned to its place in the plant process.

Regeneration
After the activated carbon has reached exhaustion and all the adsorptive sites are filled, it can be regenerated by heating it at a temperature of 820 to 930 °C.

Handling and Storage
Protect against physical damage. Store in a cool, dry well-ventilated location, away from any area where the fire hazard may be acute. Outside or detached storage is preferred. Separate from incompatibles. Containers should be bonded and grounded for transfers to avoid static sparks. Storage and use areas should be No Smoking areas. Use non-sparking type tools and equipment,
including explosion proof ventilation. Containers of this material may be hazardous when empty since they retain product residues (dust, solids); observe all warnings and precautions listed for the product.

Clean up spills in a manner that does not disperse dust into the air. Use non-sparking tools and equipment. Reduce airborne dust and prevent scattering by moistening with water. Pick up spill for recovery or disposal and place in a closed container. Warning! Spent product may have absorbed hazardous materials.

CAUTION! Wet activated carbon removes oxygen from air causing a severe hazard to workers inside carbon vessels and enclosed or confined spaces. Before entering such an area, sampling and work procedures for low oxygen levels should be taken to ensure ample oxygen availability, observing all local, state, and federal or national regulations.
FERRIC CHLORIDE

Ferric chloride is an interesting compound. It is produced as a solution from the oxidation of ferrous chloride with chlorine and it has the unusual distinction of being one of the purest and most concentrated forms of iron commercially available for water treatment. However, what is truly unusual is its chemistry is that ferric chloride not only functions as a reactant to remove water impurities but it also functions as both a coagulant and a flocculant. Its versatility is enormous. Ferric chloride is not only for the treatment of turbidity but additionally for the removal of color, natural organic materials and arsenic from raw waters.

The reactions of ferric chloride (FeCl₃) in water include an ability to form precipitates with hydrogen sulfide (H₂S), phosphate (PO₄), arsenic as arsenate (AsO₄) and hydroxide alkalinity (OH).

In drinking water treatment, however, understanding ferric chloride’s reaction with hydroxide alkalinity is the primary key to understanding its effectiveness as a coagulant and flocculant. Ferric chloride reacts in water with hydroxide alkalinity to form various hydrolysis product that incorporate Fe(OH)₃. These compounds possess high cationic charge which allows them to neutralize the electrostatic charges found on colloidal compounds and also to bind to negatively charged particles, including the ferric hydroxide itself. This ability to bind to itself is the mechanism for the formation of floc aggregates and the basis for ferric chloride’s flocculation abilities.

Operational Considerations

The hydrolysis products from ferric chloride, nominally ferric hydroxide, are different from those of sulfate based ferric sulfate and aluminum sulfate (alum). The aggregates or floc particles of ferric hydroxide are physically more discrete and dense and have a higher cationic charge density. In contrast, the floc aggregates of ferric sulfate and aluminum sulfate tend to be less discrete and “fluffy” or cloud like, this apparently due to differences in the types of bonding of the hydrolysis products. These differences translate into characteristics and abilities for ferric chloride that set it far apart from the sulfate based coagulants. In typical plant situations one can expect to use about 30% less ferric chloride than aluminum sulfate (on a dry weight basis) to achieve similar results.

Ferric chloride forms a more discrete and dense floc that promotes faster sedimentation in general and specifically, better sedimentation in cold water. This dense floc has more available cationic charge that allows higher reactivity with colloidal solids. The high ratio of cationic charge to total mass also makes the ferric chloride hydrolysis products more reactive and adsorptive with emulsified and semi-emulsified organic matter; such as oils, fats, and other natural and synthetic organic matter. This would explain the ability of ferric chloride to remove total organic carbon (TOC) and other DBP precursors. The high density of the ferric hydroxide floc leads to another important benefit for the treatment plant. The settled sludge volume of the ferric (chloride) hydroxide ranges typically from 1/3 to 2/3 that of sulfate based coagulants. Additionally, the sludge developed through the use of ferric chloride is generally much more dewaterable. So, although the ferric hydroxide molecule itself is heavier than the aluminum hydroxide molecule, this does not translate into more sludge to be disposed of. Instead, because sludge is disposed of on a wet basis rather than on a dry basis, the use of ferric chloride produces fewer wet tons of sludge and yields significant solids handling and disposal savings.
One of the other characteristics of ferric chloride is its ability to form floc over a very wide pH range as is demonstrated in the accompanying charts. The charts also show the very low solubility of ferric hydroxide compared to aluminum hydroxide. The combination of these properties allow ferric chloride to function over a very wide pH range with little fear of carry over into downstream processes due to post precipitation. This ends up being very important for operations looking to flocculate at higher pH’s and alkalinity’s while controlling corrosivity factors in the water. Additionally, the low end of the pH range becomes especially important to enhanced coagulation processes.

Safety
It is extremely important that we handle ferric chloride and all chemicals with respect and in a safe manner. Always wear personal protective safety equipment and practice good housekeeping. Keep in a tightly closed container, stored in a cool, dry, ventilated area. Protect against physical damage. Isolate from incompatible substances. Containers of this material may be hazardous when empty since they retain product residues (dust, solids); observe all warnings and precautions listed for the product.
PHOSPHATES

Phosphate products for potable water treatment can be broadly classified into three groups: phosphoric acid, orthophosphates, and condensed phosphates. Phosphoric acid, orthophosphates, and condensed phosphates encompass a wide variety of chemical compounds having potential for potable water treatment applications. The application of each phosphate product depends upon the specific properties or treatment desired.

Phosphates have many uses in the treatment of potable (drinking) water. They are used to prevent "red" (from iron) and "black" (from manganese) water; to prevent and/or retard scale formation (from minerals depositing) and corrosion (from low pH and/or dissimilar metals) in the water distribution system; and to reduce soluble lead and copper in potable water delivered to the consumer's tap.

Operational Considerations
Phosphates for potable water treatment perform several functions that include: iron and manganese control, scale inhibition and removal, corrosion control and chlorine stabilization.

Unsightly color, turbidity, and sediment will eventually develop in the water. Scale deposits will form throughout distribution mains unless the Fe, Mn, Ca, and Mg is chemically bound-up or suspended with a sequestering agent.

Phosphate ions are negatively charged particles (anions) with an electronic attraction for oppositely charged positive ions (cations) on a pipe or corroded pipe surface. When cations such as Fe, Cu, Pb, or Zn come in contact with the orthophosphate anions, they react to form a coordinated molecular structure that becomes insoluble in the water. Application of condensed polyphosphates into water supplies will delay the oxidation, color formation, and precipitation of metallic cations in a water system and also recapture iron that is being released from pipe tuberculation as rusty water.

Sequestration
Sequestration is a chemical combination of a chelating agent and metal ions in which soluble complexes are formed. Sequestration is dependent upon pH; a given sequestrant works best in a particular pH range. Sodium hexametaphosphate (SHMP) performs very well at neutral pH ranges, while pyrophosphates and polyphosphates work best under alkaline conditions.

Sequestering agents are injected via a chemical metering pump at the wellhead prior to other chemical additives (chlorine, fluoride, caustic soda, etc.). If permissible, these agents are injected down the well casing to mix with groundwater at the pump intake. Polyphosphate feed points should be separated from the chlorine injection point by as much distance as possible. If polyphosphate is fed after the chlorine, there is a possibility that the iron and manganese will be oxidized by the chlorine before the sequestering action can take place causing iron and manganese precipitates to be pumped out into the distribution system.

Iron and Manganese Control
In ground and well waters, iron and manganese are normally present in the bivalent form (Fe$^{2+}$ or Mn$^{2+}$), which is soluble. Upon exposure to air, the forms are oxidized to the trivalent form (Fe$^{3+}$ or Mn$^{3+}$), which is both insoluble and colored. Chlorination of water containing low levels of iron results in the formation of insoluble iron oxide or iron chlorides.
Insoluble iron salts are the cause of what is commonly called "red water" and can cause a reddish-brown stain on laundry, porcelain, utensils and glassware. Manganese compounds undergo similar reactions to form "black water" and can result in brownish-black stains on contact surfaces. Other heavy metals can also react with chlorine to form similar insoluble materials. The discoloration of water is considered aesthetically unappealing and levels of 0.5 mg/L of iron and 0.05 mg/L of manganese result in objectionable flavors to the water.

The use of 2 to 4 mg/L of a polyphosphate such as sodium hexametaphosphate (SHMP), sodium tripolyphosphate (STP) or tetrasodium pyrophosphate (TSPP) before chlorination results in the formation of colorless phosphate complexes of the heavy metal and elimination of the formation of insoluble compounds. Since calcium and magnesium salts of orthophosphates are relatively insoluble, water hardness can also be reduced by precipitation. The choice of which orthophosphate to use may be based on pH requirements.

Chlorine Stability
Ortho- and polyphosphates are stable in the presence of chlorine at the levels found in chlorinated potable water. There are no interactions that reduce the levels or effectiveness of either the chlorine or polyphosphate. In addition, iron and manganese sequestered as colorless complexes before chlorination will remain colorless after chlorination.

Chlorine Stabilization
Heavy metals such as iron are capable of catalyzing the decomposition of chlorine. Polyphosphates are capable of complexing with these heavy metals and greatly reducing their activity towards chlorine.

Corrosion Control
The corrosiveness of water can be attributed to a low pH (acidity), high temperature, low total dissolved solids, a high flow rate, and the presence of dissimilar metals and dissolved gases (as oxygen and carbon dioxide). When these factors are combined, the corrosion is accelerated. Polyphosphates, alone or in combination with orthophosphates, can effectively control corrosion on both ferrous and non-ferrous metals and alloys. Polyphosphates are particularly effective as corrosion control agents at lower temperatures and at a pH of less than 7.5.

Lead and Copper Removal
Lead and copper are found in drinking water largely due to leaching from piping and plumbing fixtures. Copper is restricted in municipal drinking waters to 1.3 mg/L, based on SDWA regulatory requirements. When excess copper is present, water has a metallic flavor (at 3 mg/L) and can leave a blue to green discoloration to surfaces. In adults, water containing copper in excess of 3 mg/L can cause nausea, vomiting and abdominal pain. Lead is restricted in municipal drinking water by the SDWA to 0.015 mg/L or 15 ppb. Lead in drinking water fails to leave a residue and can generally not be tasted. Lead exposure can cause irreversible mental and physical development in the developing fetus, the infant and the young child. In adults, prolonged exposure can lead to damage to the brain, kidneys, nervous system and red blood cells. The use of lead-based solder was banned in the U.S. in 1988. However, lead may be present in older homes, dated municipal water systems, and brass fittings and plumbing fixtures. The leaching of lead into plumbing systems can be greatly reduced by introducing water-soluble orthophosphates into potable water distribution systems. At low levels, the phosphates react with the lead and copper and hardness ions (calcium and/or magnesium) to form an insoluble coating
on the internal surfaces of the distribution system. Once this coating is formed, observed lead and copper levels in the drinking water drop rapidly. This effect can be maintained by continued metering of phosphates into the system.

Scale Inhibition and Removal
The formation of scale on surfaces in potable water systems is due to the crystallization of carbonates or sulfates of magnesium or calcium from solution. Very low levels of polyphosphates (1 to 10 mg/L) interfere with crystal growth. This type of scale inhibition is referred to as a threshold property because it occurs at a level much lower than would be required for a stoichiometric reaction. Threshold inhibition by polyphosphates of calcium and magnesium carbonate formation is particularly effective at a pH range of 8-10 where carbonate scale in potable water is a major problem. Calcium sulfate scale is often a problem at lower pH ranges. The same mechanism of scale inhibition that can occur with calcium carbonate at a high pH range can also occur with calcium sulfate at a lower pH range at similar low (1-10 mg/L) levels of phosphate addition. Experience has shown that polyphosphates not only inhibit scale formation, but they can also help remove existing hard deposited carbonate or sulfate scale. Pipelines carrying potable water treated with polyphosphate for extended periods of time (several months) first show a gradual softening of the scale followed by disintegration and removal. The soft scale particles are deflocculated by the polyphosphate and carried away resulting in a clean piping system.
POLYALUMINUM CHLORIDE

Polyaluminum chloride (PAC or PACl) has become the coagulant of choice in many water treatment applications. Polyaluminum chlorides has quickly gained wide acceptance as a cost effective product which often improves finished water quality when compared to other coagulants. When used as a coagulant, PAC, can provide longer filter runs, reduce or eliminate the need of alkali for pH adjustment, lower amounts of residuals and generally has the lowest overall costs of any treatment program.

The term "poly-aluminum chloride" or "PAC" refers to a class of soluble aluminum products in which aluminum chloride has been partly reacted with base. The relative amount of OH-, compared to the amount of Al, determines the basicity of a particular PAC product. The chemistry of PAC is often expressed in the form Alₙ(OH)ₘCl(3n-m). Basicity can be defined by the term m/(3n) in that equation. Because PAC is more expensive to produce than alum (aluminum sulfate) it is important to note the most important differences between these two products. Solutions of PAC are not as acidic as alum; consequently they do not tend to decrease the pH of the finished water nearly as much as an equivalent amount of alum. Another difference is that PAC is formulated so that it already contains some of the highly cationic oligomers of aluminum - materials that are especially effective for the modification of colloidal charges in a papermaking furnish. A particularly stable and important ionic species in PAC and related soluble aluminum chemicals has the formula Al₁₂(OH)₂₄AlO₄(H₂O)₁₂⁷⁺.

Polyaluminum chloride represents a series of products ranging in the degree of acid neutralization, polymerization and Al₂O₃ concentration. As the acid is neutralized in the manufacturing process, the aluminum portion of the product becomes more polymerized, resulting in higher cationic charge and increased performance capabilities. The degree of acid neutralization is measured by basicity. Basicity can range from 0% (aluminum chloride solution) to 83% (aluminum chlorohydrate solution). Typically available Polyaluminum Chloride solution products have basicities ranging from 10-70%.

Polyaluminum chloride is often employed as the primary coagulant in potable water plants, replacing the need for other coagulants such as alum, and in many cases also eliminating or at least greatly reducing the need for pH adjustment chemicals, coagulant aids and filter aids. Consistently recognized benefits of converting to a polyaluminum chloride are:

- Improved turbidity removal
- Improved color removal
- Increased TOC (Total Organic Carbon) removal
- Lower filter turbidities
- Increased filter run length
- Sludge reduction of 25-75%
- Simplified operations by eliminating pH and secondary polyelectrolyte feed
- Lower overall treatment costs

Operational Considerations
Polyaluminum chloride should be fed as a concentrated solution provided that there is adequate mixing to disperse the concentrated solution with the stream being treated. If there is not sufficient mixing then clean dilution water can be used to ensure thorough distribution.

The basicity of the product determines its most appropriate application:
- Low basicity PACls (below 20%): Applicable for waters high in color and total organic carbon (TOC).
- Medium basicity PACls (40 to 50%): Applicable for cold water, low turbidity, and slightly variable raw water quality.
- High basicity PACls (above 70%): Applicable for waters with highly variable quality, as a water softening coagulant, for direct filtration, and some waters with high color and TOC.

Strategies for Use
Because PAC is less acidic than alum there is less danger of shocking the system with a pH change at the point of addition. Alum and PACl products are not compatible; a change from feeding alum to PACl requires a complete cleaning of the chemical storage tanks and feed equipment.

Safety
Polyaluminum chloride is a corrosive mineral acid that has the following ratings:
- Health Rating: 2-Moderate
- Flammability Rating: 0-None
- Reactivity Rating: 1-Slight
- Contact Rating: 2-Moderate
- Protective Equipment: Goggles, Long Sleeves and Gloves

Storage and Handling
Storage tanks and piping for polyaluminum chloride should be constructed of materials recommended for corrosive products. Polyvinyl chloride (PVC), high density polyethylene (HDPE) and/or rubber are the materials of choice for piping and storage tanks. Metering pumps and other equipment that comes in contact with concentrated solutions of polyaluminum chloride must also be constructed of acid resistant materials such as PVC, rubber, Teflon, and ceramic. No wetted parts should contain any metals such as carbon steel, stainless steel, brass or aluminum.

Check specific manufacturer’s product information for density and strength values.
Polymers are water-soluble organic polymers that are used as both primary coagulants and coagulant aids. Polyelectrolytes are generally classified as follows:

- Anionic—ionize in solution to form negative sites along the polymer molecule.
- Cationic—ionize to form positive sites.
- Non-ionic—very slight ionization.

Primary coagulants are cationic, containing materials with relatively low-molecular weights (generally less than 500,000). Cationic charge density (available positive-charged sites) is very high. The efficiencies of primary coagulants depend greatly on the exact nature of the turbidity particles to be coagulated, the amount of turbidity present, and the turbulence (mixing) available during coagulation.

Coagulant aids may be anionic, cationic, or near-neutrally charged. Their molecular weights are relatively high (range up to 20,000,000). They function primarily through interparticle bridging.

Although not normally used exclusively, polymers do possess several advantages over inorganic coagulants. These are as follows:

- During clarification, the volume of sludge produced can be reduced by 50 to 90%;
- The resulting sludge is more easily dewatered and contains less water;
- Polymeric coagulants do not affect pH. Therefore, the need for an alkaline chemical such as lime, caustic, or soda ash is reduced or eliminated;
- Polymeric coagulants do not add to the total dissolved solids concentration; and,
- Soluble iron or aluminum carryover in the clarifier effluent can result from inorganic coagulant use. By using polymeric coagulants, this problem can be reduced or eliminated.

Coagulant Aids

The coagulation process is often enhanced through the use of coagulant aids (or flocculants). Sometimes, excess primary coagulant is added to promote large floc sizes and rapid settling rates. However, in some waters, even large doses of primary coagulant will not produce a satisfactory floc. In these cases, a polymeric coagulant aid can be added after the coagulant, to hasten reactions, to produce a denser floc, and thereby reducing the amount of primary coagulant required. Because of polymer “bridging,” small floc particles agglomerate rapidly into larger more cohesive floc, which settles rapidly. Coagulant aids also help to create satisfactory coagulation over a broader pH range. Generally, the most effective types of coagulant aids are slightly anionic polyacrylamides with very high-molecular weights. In some clarification systems, non-ionic or cationic types have proven effective. The two types of coagulant aids discussed below are synthetic-organic and natural-organic.

Synthetic Organic Coagulant/Coagulant Aids

Synthetic organic polymers are the most commonly used coagulant aids for coagulation/flocculation of heavy metal precipitates. This is because metallic precipitates typically possess a slight electrostatic positive charge resulting from charge density separation. The negatively charged reaction sites on the anionic polyelectrolyte attract and adsorb the slightly positive charged precipitate. Synthetic organic polymers are commercially marketed in the form of dry powder, granules, beads, aqueous solutions, aqueous gels, and oil-in-water emulsions. Generally, liquid systems are preferred because they require less floor space, reduce
labor requirements, and reduce the potential for side reactions because the concentrate can be
diluted in the automatic dispensing systems. Typical dosage requirements for metals-containing
waters are in the 0.5- to 2.0-mg/L range. Polymers work most effectively at alkaline and
intermediate pHs but lose effectiveness at pH levels lower than 4.5.

Natural Organic Coagulant Aids
Coagulant aids derived from natural products include starch, starch derivatives, proteins, and
tannins. Of these, starch is the most widely used. In addition, because of the composition of
natural products, they are more susceptible to microbiological attack, which can create storage
problems.
POTASSIUM PERMANGANATE

Potassium permanganate (KMnO₄) is used primarily to control taste and odors, remove color, control biological growth in treatment plants, and remove iron and manganese. In a secondary role, potassium permanganate may be useful in controlling the formation of trihalomethanes (THMs) and other disinfection byproducts (DBPs) by oxidizing precursors and reducing the demand for other disinfectants. The mechanism of reduced DBPs may be as simple as moving the point of chlorine application further downstream in the treatment train using potassium permanganate to control taste and odors, color, algae, etc. instead of chlorine. Although potassium permanganate has many potential uses as an oxidant, it is a poor disinfectant.

Primary Uses and Points of Application
Although potassium permanganate can inactivate various bacteria and viruses, it is not used as a primary or secondary disinfectant when applied at commonly used treatment levels. Potassium permanganate levels that may be required to obtain primary or secondary disinfection could be cost prohibitive. However, potassium permanganate is used in drinking water treatment to achieve a variety of other purposes including:

- Oxidation of iron and manganese;
- Oxidation of taste and odor compound;
- Control of nuisance organisms; and
- Control of DBP formation.

Iron and Manganese Oxidation
A primary use of potassium permanganate is iron and manganese removal. Potassium permanganate will oxidize iron and manganese to convert ferrous (2+) iron into the ferric (3+) state and (2+) manganese to the (4+) state. The oxidized forms will precipitate as ferric hydroxide and manganese hydroxide. The precise chemical composition of the precipitate will depend on the nature of the water, temperature, and pH.

The potassium permanganate dose required for oxidation is 0.94 mg/mg iron and 1.92 mg/mg manganese. In practice, the actual amount of potassium permanganate used has been found to be less than that indicated by stoichiometry. The oxidation time ranges from 5 to 10 minutes, provided that the pH is over 7.0.

Oxidation of Taste and Odor Compounds
Potassium permanganate is used to remove taste and odor causing compounds, such as earthy-musty smelling compounds in drinking water. Doses of potassium permanganate used to treat taste and odor causing compounds range from 0.25 to 20 mg/L.

Control of Nuisance Organisms
The adult Asiatic clam was found to be much more resistant to potassium permanganate than the juvenile form. Potassium permanganate doses used to control the juvenile Asiatic clam range from 1.1 to 4.8 mg/L. Continuous potassium permanganate dosing of 0.5 to 2.5 mg/L proved to be the most effective against zebra mussels.

Disinfection Byproduct Control
It is anticipated that potassium permanganate may play a role in disinfection and DBP control strategies in water treatment. Potassium permanganate could be used to oxidize organic
precursors at the head of the treatment plant minimizing the formation of byproducts at the downstream disinfection stage of the plant.

Points of Application
In conventional treatment plants, potassium permanganate solution is added to the raw water intake, at the rapid mix tank in conjunction with coagulants, or at clarifiers upstream of filters. In direct filtration plants, this oxidant is typically added at the raw water intake to increase the contact time upstream of the filter units. In all cases, potassium permanganate is added prior to filtration.

Potassium permanganate solution is typically pumped from the concentrated solution tank to the injection point. If the injection point is a pipeline, a standard injection nozzle protruding midway into the pipe section is used. Injection nozzles can also be used to supply the solution to mixing chambers and clarifiers. Potassium permanganate is a reactive, fast-acting oxidizer and does not require special mixing equipment at the point of injection to be effective.

Operational Considerations
In utilizing potassium permanganate in water treatment, caution should be taken to prevent overdosing, in which case, excess manganese will pass through the treatment plant. Proper dosing should be maintained to ensure that all of the potassium permanganate is reduced (i.e., forming MnO₂ solids) and removed from the plant upstream of, or within, the filters. If residual manganese is reduced downstream of the filters, the resulting solids can turn the finished water a brown/black color and precipitate in the homes of consumers on heat exchange surfaces such as hot water heaters and dishwashers.

Use of potassium permanganate can also be a source of manganese in the finished water, which is regulated in drinking water with a secondary maximum contaminant level of 0.05 mg/L. Under reducing conditions, the MnO₂ solids accumulated in filter backwash water and settling basins can be reduced to soluble Mn²⁺ and pass through the filters thereby remaining in the finished water.

Also, under these conditions, soluble Mn²⁺ in return water from settling basin dewatering facilities and filter backwash water recycled to the head of the plant are potential sources of manganese that will have to be treated and/or controlled to minimize finished water manganese levels.

Overdosing of potassium permanganate in conventional plants is generally corrected by settling the excess MnO₂ solids in the settling basin. Removal of the excess potassium permanganate can be monitored qualitatively by observing the disappearance of the pink color characteristic of potassium permanganate. In plants that do not utilize flocculation and sedimentation processes potassium permanganate dosing should be closely monitored.

In general, potassium permanganate does not interfere with other treatment processes or plant conditions. Potassium permanganate can be added downstream of, or concurrently with, coagulant and filter polymer aids. Powdered activated carbon (PAC) and permanganate should not be added concurrently. PAC should be added downstream of potassium permanganate because it may consume potassium permanganate, rendering it unavailable for the oxidation of target organics.
The primary purpose of water treatment is to produce water that is safe to drink. Unfortunately, unless the water is also pleasant to drink, it may be rejected by the consumer in favor of an alternate supply that may not be safe. Consequently, water delivered to the consumer from a public water supply should meet certain basic requirements, such as:

- It should contain no disease-causing organisms;
- It should contain no toxic metals or chemicals;
- It should be colorless and clear;
- It must taste good and be free from offensive odor;
- It should be non-corrosive;
- It must be free from objectionable gases, such as hydrogen sulfide;
- It should be free from objectionable staining minerals, such as iron and manganese; and,
- It should be plentiful and low in cost.

The type of treatment selected depends upon the contaminants that need to be inactivated or removed from the water. Contaminants, and other objectionable characteristics of water, which are of concern include the following categories:

- Turbidity and Particulate Matter;
- Microorganisms;
- Iron and Manganese;
- Color, Taste and Odor, and Other Organics;
- Objectionable Gases;
- Hardness;
- Nitrate;
- Corrosive Properties; and,
- Biological Nuisances (Algae, Iron Bacteria, etc.).

Some treatment methods may be applied to more than one category. There are many books and manuals that discuss the water treatment methods that are common to larger systems.

Operators interested in more detailed information should refer to the reference materials listed at the end of this manual.
PRETREATMENT

The pretreatment processes aim to improve the quality of the raw water prior to the main treatment process. Many of them seek to reduce the natural variations or extremes in water quality. A typical case is turbidity (measured as NTU), used to indicate how much suspended material is present in the water. During heavy rainfall and its run-off, rivers may reach levels of several hundred NTUs during such events, tending to overwhelm the filtration processes by the sheer volume of the solids to be removed.

Pretreatment processes may reduce the level of these solids by factors of ten or more, allowing a treatment plant to continue functioning rather than shutting down or damaging any treatment components.

Oxidation Processes
Aeration is the most common process for removing dissolved gases. Aeration is also used to help in precipitating dissolved iron and manganese. Sometimes the direct addition of an oxidizing chemical may be needed to help precipitate the metals. The following oxidizing chemicals are in common use:

- Chlorine, in any form, will oxidize ferrous iron to ferric iron, making it insoluble so that it precipitates out.
- Potassium permanganate is very effective at destroying some organic substances and oxidizing manganese. Again, the manganese is rendered insoluble and precipitates out.
- Ozone, usually used to oxidize taste and odor compounds because many of these compounds are very resistant to oxidation, but also used to oxidize iron and manganese.

Presedimentation
Presedimentation is used to remove gravel, sand, and other large or gritty or floating material from the raw water, and to dampen particle loading to the rest of the treatment plant. Presedimentation is similar to conventional sedimentation, except that presedimentation may be operated at higher loading rates and may not involve use of chemical coagulants. Also, some water supplies operate the presedimentation process periodically and only in response to periods of high particle loading. Sometimes a presedimentation basin is no more than a pond that has been dug out between the intake and the water treatment plant.
Iron and manganese are common in groundwater supplies used by many small water systems. Exceeding the suggested maximum contaminant levels (MCL) usually results in discolored water, laundry, and plumbing fixtures. This, in turn, results in consumer complaints and a general dissatisfaction with the water utility. Surface water generally does not contain large amounts of iron or manganese, but iron and manganese are found frequently in water systems that use groundwater.

There are secondary standards set for iron and manganese, but these are not health related and are not enforceable. The secondary (aesthetic) MCLs for iron and manganese are 0.3 milligrams per liter (mg/l) and 0.05 mg/l, respectively. If water contains more than 0.05 ppm iron, or 0.01 ppm manganese, the operator should implement an effective hydrant-flushing program in order to avoid customer complaints.

Small water plants may choose to either sequestrate or remove iron and manganese. Sequestration only works for combined iron and manganese concentrations up to 1.0 mg/L and only in cases where the treatment is not permanent. Removal is usually achieved through ion exchange or oxidation/filtration. There are a number of chemical oxidants and filtration media available that can be used in various combinations.

Problems Associated with Iron and Manganese
Small amounts of iron are often found in water because of the large amount of iron present in the soil and because corrosive water will pick up iron from pipes. Clothing washed in water containing excessive iron may become stained a brownish color. The taste of beverages, such as tea and coffee, may also be affected by iron. Manganese produces a brownish color in laundered clothing, leaves black particles on fixtures, and—as with iron—affects the taste of beverages, including coffee and tea.

Groundwater from the faucet or tap is usually clear and colorless. However, when water containing colorless, dissolved iron is allowed to stand in a cooking container or comes in contact with a sink or bathtub, the iron combines with oxygen from the air to form reddish-brown particles (commonly called rust). Manganese forms brownish-black particles. These impurities can give a metallic taste to water or to food.

The rusty or brown stains on plumbing fixtures, fabrics, dishes, and utensils cannot be removed by soaps or detergents. Bleaches and alkaline builders (often sodium phosphate) can make the stains worse. Over time, iron deposits can build up in pressure tanks, water heaters, and pipelines, reducing the quantity and pressure of the water supply.

Iron and/or manganese in water creates problems common to many water supply systems. When both are present beyond recommended levels, special attention should be paid to the problem. How iron and manganese are removed depends on the type and concentration and this helps determine the best procedure and (possible) equipment to use.

Bacteria and Iron and Manganese
Iron and manganese in water also promote the growth of bacteria (including iron bacteria). These organisms obtain energy for growth from the chemical reaction that occurs when iron and manganese mix with dissolved oxygen. These bacteria form thick slime growths on the walls of
the piping system and on well screens. These shives tend to be rust-colored from iron and black-colored from manganese. Variations in flow can cause these slime growths to separate from pipe walls, resulting in dirty water in the system.

The growth of iron bacteria can be controlled by chlorination. However, when water containing iron is chlorinated, the iron is converted from the ferrous state to the ferric state—in other words, rust—and manganese is converted into black manganese dioxide. These materials form a coating on the inside of the water main and, when they break loose, a customer will sometimes complain of “dirty” water.

Iron bacteria will use even small amounts of iron present in the ferrous state, oxidize it, and then use the energy. Manganese is also used by other bacteria to form organics, which contribute to the iron bacteria slime in the well and/or water system. Iron bacteria are found anywhere a food source of iron is available. The presence of one bacterium is all that is needed to start an infestation in a well or a distribution system.

Iron and Manganese Removal

The majority of iron and manganese treatment systems employ the processes of oxidation/filtration. The oxidant chemically oxidizes the iron or manganese (forming a particle), and kills iron bacteria and any other disease-causing bacteria that may be present. The filter then removes the iron or manganese particles.

Oxidation followed by filtration is a relatively simple process. The source water must be monitored to determine proper oxidant dosage, and the treated water should be monitored to determine if the oxidation process was successful.

Aeration

Iron is easily oxidized by atmospheric oxygen. Aeration provides the dissolved oxygen needed to convert the iron and manganese from ferrous and manganous (soluble) forms to insoluble oxidized ferric and manganic forms. It takes 0.14 ppm of dissolved oxygen to oxidize 1 ppm of iron, and 0.27 ppm of dissolved oxygen to oxidize 1 ppm of manganese.

Aeration requires careful control of the water flow through the process. If water flow is too great, not enough air is applied to oxidize the iron and manganese. If water flow is too small, the water can become saturated with dissolved oxygen and, consequently, become corrosive to the distribution system. Corrosive water may lead to increased lead and copper levels at customers’ taps.

During aeration, slime growths may develop on the aeration equipment, and if these growths are not controlled, they can produce taste and odor problems in the water. The growth of slime can be controlled by adding chlorine at the head of the treatment plant. The process should be inspected regularly to catch problems early.

A detention basin can be provided after aeration to allow complete oxidation. These basins should be cleaned regularly to avoid sludge accumulation. Detention time can also be provided with head on the filters rather than requiring a separate tank. Detention time before filtration should be at least 20 minutes, more if possible. The pH of the water influences how much time is needed for the reaction to be completed. After oxidation of the iron and manganese, the water must be filtered to remove the precipitated iron and manganese.
Oxidation of iron and manganese with air is by far the most cost-effective method since there is no chemical cost; however, there are disadvantages. The oxidation process can be slowed and the reaction tank has to be quite large (if there are high levels of manganese). In addition, small changes in water quality may affect the pH of the water and the oxidation rate may slow to a point where the plant capacity for iron and manganese removal is reduced.

Oxidation

Before iron and manganese can be filtered, they need to be oxidized to a state in which they can form insoluble complexes. Oxidation involves the transfer of electrons from the iron, manganese, or other chemicals being treated to the oxidizing agent. Ferrous iron (Fe$^{2+}$) is oxidized to ferric iron (Fe$^{3+}$), which readily forms the insoluble iron hydroxide complex Fe(OH)$_3$. Reduced manganese (Mn$^{2+}$) is oxidized to (Mn$^{4+}$), which forms insoluble (MnO$_2$). The most common chemical oxidants in water treatment are chlorine, chlorine dioxide, potassium permanganate, and ozone. Oxidation using chlorine or potassium permanganate is frequently applied in small groundwater systems. The dosing is relatively easy, requires simple equipment, and is fairly inexpensive.

Chlorination is widely used for oxidation of divalent iron and manganese. However, the formation of trihalomethanes (THMs) in highly colored waters may be a problem. Chlorine feed rates and contact time requirements can be determined by simple jar tests. As an oxidant, potassium permanganate (KMnO$_4$) is normally more expensive than chlorine and ozone, but for iron and manganese removal, it has been reported to be as efficient and it requires considerably less equipment and capital investment. The dose of potassium permanganate, however, must be carefully controlled. Too little permanganate will not oxidize all the iron and manganese, and too much will allow permanganate to enter the distribution system and cause a pink color. Permanganate can also form precipitates that cause mudball formations on filters. These are difficult to remove and compromise filter performance.

Ozone (O$_3$) may be used for iron and manganese oxidation. Ozone may not be effective for oxidation in the presence of humic or fulvic materials. If not dosed carefully, ozone can oxidize reduced manganese to permanganate and result in pink water formation as well. Manganese dioxide particles, also formed by oxidation of reduced manganese, must be carefully coagulated to ensure their removal.

A low-cost method of providing oxidation is to use the oxygen in air as the oxidizing agent in a tray aerator. Water is simply passed down a series of porous trays to provide contact between air and water. No chemical dosing is required, which allows for unattended operation. This method is not effective for water in which the iron is complexed with humic materials or other large organic molecules. Oxygen is not a strong enough oxidizing agent to break the strong complexes formed between iron and manganese and large organic molecules. Furthermore, the rate of reaction between oxygen and manganese is very slow below pH values of 9.5.

The presence of other oxidizable species in water hinders oxidation of the desired reduced compounds. Volatile organic chemicals, other organic compounds, or taste- and odor-causing compounds may result in an oxidant demand. This additional oxidant demand must be accounted for when dosing the oxidant. The expense of operation derives from the chemical use in most cases, and therefore is directly related to the source water quality.
Sequestering

Soluble iron and manganese can be stabilized, or sequestered, instead of removed. Sequestering keeps the iron and manganese in solution. This effectively eliminates the problem of staining because it is the insoluble precipitate that causes the staining. The process also delays the precipitation of oxidized iron and manganese, thereby greatly reducing the layer of scale that forms on the pipe. Red water can sometimes be prevented in this way.

Phosphate compounds are a family of chemicals that can surround minerals and keep them in solution. Pyrophosphate, tripolyphosphate, and metaphosphate may all be effective as iron and manganese sequestering agents. The most effective one, however, seems to be sodium phosphate in low concentrations. The proper dose and type of phosphate should be selected only after a qualified technician or consultant performs bench-scale testing.

Phosphate sequestering is effective where the water contains up to 0.3 mg/L of iron and less than 0.1 mg/L of manganese. The phosphate compounds must be added to the water at a point where the iron is still dissolved in order to maintain water clarity and prevent possible iron staining. This should be before your point of chlorination or as close to the well discharge point as possible.

Phosphate compound treatment is a relatively cheap way to treat water for low levels of iron and manganese. Since phosphate compounds do not actually remove iron, water treated with these chemicals will retain a metallic taste. In addition, too great a concentration of phosphate compounds will make water feel slippery.

If the total detention time in the distribution system exceeds 4 days, the phosphates may break down and release the iron and manganese in the outer portions of the system. If the detention is exceeded, the iron or manganese problem may not be resolved with phosphate.

Greensand Filtration

Oxidation/filtration can be used as a special case of pressurized granular-media filtration where the granular media catalyzes the oxidation and precipitation of iron and manganese. Manganese-oxide (MnOx) media, which include manganese greensand and pyrolucite, are commonly used in oxidation/filtration processes because of their unique adsorptive and catalytic capabilities. Greensand is manufactured by coating glauconite with manganese dioxide, while pyrolucite is a naturally mined ore composed of solid manganese dioxide. Greensand media has been shown to be capable of removing up to 80% of arsenic by oxidation/adsorption.

In oxidation/filtration processes, water is passed through a column of MnOx media which adsorbs and catalyzes the oxidation of the iron and manganese. The filtering capacity of the granular MnOx media then retains the precipitated iron, manganese, and arsenic until it is backwashed out of the column. Backwashing creates waste water and sludge, which the water system must properly dispose. Arsenic appears to be removed primarily by the iron precipitates as opposed to those of manganese. Water systems with low levels of influent iron (less than 1.5 mg/L or less than 20:1 ratio with arsenic) may want to consider adding ferric chloride prior to oxidation. It is generally recommended that green sand be preceded by a 12 inch anthracite cap to filter any precipitated iron particulates before the green sand.

In order for greensand to retain its adsorption and catalytic oxidation capabilities for iron and manganese removal, the media must be regenerated with permanganate or chlorine. Typically
these oxidants are added ahead of the filter where they provided continuous oxidation of the contaminants as well as regeneration of the MnOx media. Arsenic adsorbs to the iron floc formed in this chemical oxidation step and is physically filtered
SEQUESTERING

Soluble iron and manganese can be stabilized, or sequestered, instead of removed. Sequestering keeps the iron and manganese in solution. This effectively eliminates the problem of staining because it is the insoluble precipitate that causes the staining. The process also delays the precipitation of oxidized iron, thereby greatly reducing the layer of scale that forms on the pipe. Red water can sometimes be prevented in this way.

Phosphate compounds are a family of chemicals that can surround minerals and keep them in solution. Pyrophosphate, tripolyphosphate, and metaphosphate may all be effective as iron and manganese sequestering agents. The most effective one, however, seems to be sodium phosphate in low concentrations. The proper dose and type of phosphate should be selected only after a qualified technician or consultant performs bench-scale testing.

Phosphate sequestering is effective where the water contains up to 0.3 mg/L of iron and less than 0.1 mg/L of manganese. The phosphate compounds must be added to the water at a point where the iron is still dissolved in order to maintain water clarity and prevent possible iron staining. This should be before your point of chlorination or as close to the well discharge point as possible.

Phosphate compound treatment is a relatively cheap way to treat water for low levels of iron and manganese. Since phosphate compounds do not actually remove iron, water treated with these chemicals will retain a metallic taste. In addition, too great a concentration of phosphate compounds will make water feel slippery.
COAGULATION & FLOCCULATION

All waters, especially surface waters, contain both dissolved and suspended particles. Coagulation and flocculation processes are used to separate the suspended solids portion from the water.

The suspended particles vary considerably in source, composition charge, particle size, shape, and density. Correct application of coagulation and flocculation processes and selection of the coagulants depend upon understanding the interaction between these factors. The small particles are stabilized (kept in suspension) by the action of physical forces on the particles themselves. One of the forces playing a dominant role in stabilization results from the surface charge present on the particles. Most solids suspended in water possess a negative charge and, since they have the same type of surface charge, repel each other when they come close together. Therefore, they will remain in suspension rather than clump together and settle out of the water.

Coagulation and flocculation occur in successive steps intended to overcome the forces stabilizing the suspended particles, allowing particle collision and growth of floc. If step one is incomplete, the following step will be unsuccessful.

Coagulation
The first step destabilizes the particle’s charges. Coagulants with charges opposite those of the suspended solids are added to the water to neutralize the negative charges on dispersed non-settleable solids such as clay and color-producing organic substances.

Once the charge is neutralized, the small suspended particles are capable of sticking together. The slightly larger particles, formed through this process and called microflocs, are not visible to the naked eye. The water surrounding the newly formed microflocs should be clear. If it is not, all the particles’ charges have not been neutralized, and coagulation has not been carried to completion. More coagulant may need to be added.

A high-energy, rapid-mix to properly disperse the coagulant and promote particle collisions is needed to achieve good coagulation. Over-mixing does not affect coagulation, but insufficient mixing will leave this step incomplete. Coagulants should be added where sufficient mixing will occur. Proper contact time in the rapid-mix chamber is typically 1 to 3 minutes.

Flocculation
Following the first step of coagulation, a second process called flocculation occurs. Flocculation, a gentle mixing stage, increases the particle size from submicroscopic microfloc to visible suspended particles.

The microflocs are brought into contact with each other through the process of slow mixing. Collisions of the microfloc particles cause them to bond to produce larger, visible flocs called pinflocs. The floc size continues to build through additional collisions and interaction with inorganic polymers formed by the coagulant or with organic polymers added. Macroflocs are formed. High molecular weight polymers, called coagulant aids, may be added during this step to help bridge, bind, and strengthen the floc, add weight, and increase settling rate. Once the floc has reached its optimum size and strength, the water is ready for the sedimentation process.

Design contact times for flocculation range from 15 or 20 minutes to an hour or more.
Operational Considerations
Flocculation requires careful attention to the mixing velocity and amount of mix energy. To prevent the floc from tearing apart or shearing, the mixing velocity and energy input are usually tapered off as the size of the floc increases. Once flocs are torn apart, it is difficult to get them to reform to their optimum size and strength. The amount of operator control available in flocculation is highly dependent upon the type and design of the equipment.

Design and Operating Considerations: Conventional Plants
Conventional plant designs separate the coagulation, or rapid-mix, stage from the flocculation, or slow-mix, stage. Normally this is followed by a sedimentation stage, after which filtration takes place. Plants designed for direct filtration route the water directly from flocculation to filtration. These systems typically have a higher raw-water quality. Conventional designs can incorporate adjustable mixing speeds in both the rapid-mix and slow-mix equipment. Multiple feed points for coagulants, polymers, flocculants, and other chemicals can be provided. There is generally adequate space to separate the feed points for incompatible chemicals.

Conventional plant designs have conservative retention times and rise rates. This usually results in requirements for large process basins and a large amount of land for the plant site. On-site pilot plant evaluation of the proposed process, by a qualified engineer familiar with the source of the water, is advisable prior to selection and construction of the units.

Retention or detention time is the theoretical time in minutes that water spends in a process. It is calculated by dividing the liquid volume, in gallons, of a basin by the plant flow rate in gallons per minute. Actual detention time in a basin will be less than the theoretical detention time because of “dead areas” and short circuiting, which could be due to inadequate baffling.

\[
\text{Retention time} = \frac{\text{basin volume (gallons)}}{\text{flow (gpm)}}
\]

The rise rate is calculated by dividing the flow in gallons per minute by the net upflow area of the basin in square feet.

\[
\text{Rise Rate} = \frac{\text{flow (gpm)}}{\text{area (ft}^2\text{)}}
\]

Sedimentation basins are used in conventional plants. Direct-filtration plants skip the sedimentation stage and go directly to filtration. Detention times for sedimentation are in the range of 1 to 4 hours. Inlets are designed to distribute water evenly and at uniform velocities. Overflow rates should not exceed 20,000 gallons per day per foot of weir length. Velocity should not exceed 0.5 feet per minute.

Sedimentation basins are used to settle out the floc before going to the filters. Some type of sludge collection device should be used to remove sludge from the bottom of the basin.

Design and Operating Considerations: Combination Units
Some designs incorporate coagulation, flocculation, and sedimentation within a single unit. These designs can be separated into upflow solids contact units and sludge blanket units. Most solids contact designs use recirculation of previously formed flocs to enhance floc formation and
maximize usage of treatment chemicals. Sludge bed designs force the newly forming flocs to pass upward through a suspended bed of floc. In both styles of units, the cross-sectional surface of the basin increases from the bottom to top, causing the water flow to slow as it rises, and allowing the floc to settle out. The combination units generally use higher rise rates and shorter detention time than conventional treatment. Numerous manufacturers market proprietary units based on these design concepts. These units are more compact and require less land for plant site location. On-site pilot plant evaluation of the proposed process, by a qualified engineer familiar with the source water, is advisable prior to selection and construction of combined units.

Coagulant Selection

The choice of coagulant chemical depends upon the nature of the suspended solid to be removed, the raw water conditions, the facility design, and the cost of the amount of chemical necessary to produce the desired result.

Final selection of the coagulant (or coagulants) should be made following thorough jar testing and plant scale evaluation. Considerations must be given to required effluent quality, effect upon downstream treatment process performance, cost, method and cost of sludge handling and disposal, and net overall cost at the dose required for effective treatment.

Coagulant chemicals come in two main types - primary coagulants and coagulant aids. Primary coagulants neutralize the electrical charges of particles in the water which causes the particles to clump together. Primary coagulants are always used in the coagulation/flocculation process. Coagulant aids add density to slow-settling flocs and add toughness to the flocs so that they will not break up during the mixing and settling processes. Coagulant aids, in contrast, are not always required and are generally used to reduce flocculation time.

Inorganic Coagulants

Inorganic coagulants such as aluminum and iron salts are the most commonly used. When added to the water, they furnish highly charged ions to neutralize the suspended particles. The inorganic hydroxides formed produce short polymer chains which enhance microfloc formation.

Inorganic coagulants usually offer the lowest price per pound, are widely available, and, when properly applied, are quite effective in removing most suspended solids. They are also capable of removing a portion of the organic precursors which may combine with chlorine to form disinfection by-products. They produce large volumes of floc which can entrap bacteria as they settle. However, they may alter the pH of the water since they consume alkalinity. When applied in a lime soda ash softening process, alum and iron salts generate demand for lime and soda ash. They require corrosion-resistant storage and feed equipment. The large volumes of settled floc must be disposed of in an environmentally acceptable manner.

Common coagulant chemicals used are alum (aluminum sulfate), ferric sulfate, ferric chloride, ferrous sulfate, sodium aluminate, polyaluminum chloride, and polymers. The first four will lower the alkalinity and pH of the solution while the sodium aluminate will add alkalinity and raise the pH.

Polymers

Polymers--long-chained, high-molecular-weight, organic chemicals--are becoming more widely used, especially as coagulant aids together with the regular inorganic coagulants. Anionic (negatively charged) polymers are often used with metal coagulants. Low-to-medium weight,
positively charged (cationic) polymers may be used alone or in combination with the aluminum and iron type coagulants to attract the suspended solids and neutralize their surface charge. The manufacturer can produce a wide range of products that meet a variety of source-water conditions by controlling the amount and type of charge and relative molecular weight of the polymer.

Polymers are effective over a wider pH range than inorganic coagulants. They can be applied at lower doses, and they do not consume alkalinity. They produce smaller volumes of more concentrated, rapidly settling floc. The floc formed from use of a properly selected polymer will be more resistant to shear, resulting in less carryover and a cleaner effluent.

Polymers are generally several times more expensive in their price per pound than inorganic coagulants. Selection of the proper polymer for the application requires considerable jar testing under simulated plant conditions, followed by pilot or plant-scale trials. All polymers must be approved for potable water use by regulatory agencies.
Numerous chemicals are used in coagulation and flocculation processes. There are advantages and disadvantages associated with each chemical. The designer should consider the following factors in selecting these chemicals:

- Effectiveness;
- Cost;
- Reliability of supply;
- Sludge consideration;
- Compatibility with other treatment processes;
- Environmental effects; and,
- Labor and equipment requirements for storage, feeding, and handling.

Coagulants and coagulant aids commonly used are generally classified as inorganic coagulants and polyelectrolytes. Polyelectrolytes are further classified as either synthetic-organic polymers or natural-organic polymers.

Inorganic Coagulants.

The three main classifications of inorganic coagulants are:

- Aluminum derivatives;
- Iron derivatives; and,
- Lime.

With exception of sodium aluminate, all common iron and aluminum coagulants are acid salts and, therefore, their addition lowers the pH of the treated water. Depending on the influent's pH and alkalinity (presence of HCO_3^-, CO_3^{2-}, and OH^-), an alkali, such as lime or caustic, may be required to counteract the pH depression of the coagulant. This is important because pH affects both particle surface charge and floc precipitation during coagulation. The optimum pH levels for forming aluminum and iron hydroxide flocs are those that minimize the hydroxide solubility. However, the optimum pH for coagulating suspended solids does not always coincide with the optimum pH for minimum hydroxide floc solubility. A list of several common inorganic coagulants along with associated advantages and disadvantages is listed in the table below.
Advantages and Disadvantages of Alternative Inorganic Coagulants

<table>
<thead>
<tr>
<th>Name</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum Sulfate (Alum) Al₂(SO₄)₁₈H₂O</td>
<td>Easy to handle and apply; most commonly used; produces less sludge than lime; most effective between pH 6.5 and 7.5</td>
<td>Adds dissolved solids (salts) to water; effective over a limited pH range</td>
</tr>
<tr>
<td>Sodium Aluminate Na₂Al₂O₄</td>
<td>Effective in hard waters; small dosages usually needed</td>
<td>Often used with alum; high cost; ineffective in soft waters</td>
</tr>
<tr>
<td>Polyaluminum Chloride (PAC) Al₁₃(OH)₂₀(SO₄)₂·Cl₁₅</td>
<td>In some applications, floc formed is more dense and faster settling than alum</td>
<td>Not commonly used; little full scale data compared to other aluminum derivatives</td>
</tr>
<tr>
<td>Ferric Sulfate Fe₂(SO₄)₃</td>
<td>Effective between pH 4–6 and 8.8–9.2</td>
<td>Adds dissolved solids (salts) to water; usually need to add alkalinity</td>
</tr>
<tr>
<td>Ferric Chloride FeCl₃·6H₂O</td>
<td>Effective between pH 4 and 11</td>
<td>Adds dissolved solids (salts) to water; consumes twice as much alkalinity as alum</td>
</tr>
<tr>
<td>Ferrous Sulfate (Copperas) FeSO₄·7H₂O</td>
<td>Not as pH sensitive as lime</td>
<td>Adds dissolved solids (salts) to water; usually need to add alkalinity</td>
</tr>
<tr>
<td>Lime Ca(OH)₂</td>
<td>Commonly used; very effective; may not add salts to effluent</td>
<td>Very pH dependent; produces large quantities of sludge; overdose can result in poor effluent quality</td>
</tr>
</tbody>
</table>

Aluminum Derivatives

Common aluminum coagulants include aluminum sulfate (alum), sodium aluminate, and polyaluminum chloride. Dry alum is available in several grades, with a minimum aluminum content (expressed as %Al₂O₃) of 17%. Liquid alum is about 49% solution, or approximately 8.3% by weight aluminum as Al₂O₃. Alum coagulation works best for a pH range of 5.5 to 8.0; however, actual removal efficiency depends on competing ions and chelating agent concentrations.

Sodium aluminate is an alternative to alum and is available in either dry or liquid forms, containing an excess of base. Sodium aluminate provides a strong alkaline source of watersoluble aluminum, which is useful when adding sulfate ions is undesirable. It is sometimes used in conjunction with alum for controlling pH.

Polyaluminum chloride (PACl), another aluminum derivative, is a partially hydrolyzed aluminum chloride solution. Although still not widely used, it has been reported to provide stronger, faster settling flocs than alum in some applications.

Iron Derivatives

Iron coagulants include ferric sulfate, ferric chloride, and ferrous sulfate (copperas). Compared to aluminum derivatives, iron coagulants can be used successfully over a much broader pH range of 5.0 to 11.0. However, when ferrous compounds are used, the solution is typically chlorinated...
before it is sent into the coagulation vessel. As this reaction produces both ferric chloride and ferric sulfate, chlorinated ferrous sulfate has the same field of usefulness as the other iron coagulants. Because ferrous sulfate works better in feeding devices, compared with the ferric coagulants, chlorinated copperas is sometimes preferred. The ferric hydroxide floc is heavier than alum floc and therefore settles more rapidly.

Although lime is primarily used for pH control or chemical precipitation, it is also commonly used as a co-coagulant.

Polyelectrolytes

Polyelectrolytes are water-soluble organic polymers that are used as both primary coagulants and coagulant aids. Polyelectrolytes are generally classified as follows:

- Anionic—ionize in solution to form negative sites along the polymer molecule;
- Cationic—ionize to form positive sites; and,
- Non-ionic—very slight ionization.

Polyelectrolyte primary coagulants are cationic, containing materials with relatively low-molecular weights (generally less than 500,000). Cationic charge density (available positive-charged sites) is very high.

Coagulant aids, which are polyelectrolytes, may be anionic, cationic, or near-neutrally charged. Their molecular weights are relatively high (range up to 20,000,000). They function primarily through interparticle bridging.

The efficiencies of polyelectrolyte primary coagulants depend greatly on the exact nature of the turbidity particles to be coagulated, the amount of turbidity present, and the turbulence (mixing) available during coagulation.

Polyelectrolytes vs. Inorganic Coagulants.

Although they cannot be used exclusively, polyelectrolytes do possess several advantages over inorganic coagulants. These are as follows:

- During clarification, the volume of sludge produced can be reduced by 50 to 90%;
- The resulting sludge is more easily dewatered and contains less water;
- Polymeric coagulants do not affect pH. Therefore, the need for an alkaline chemical such as lime, caustic, or soda ash is reduced or eliminated;
- Polymeric coagulants do not add to the total dissolved solids concentration; and,
- Soluble iron or aluminum carryover in the clarifier effluent can result from inorganic coagulant use. By using polymeric coagulants, this problem can be reduced or eliminated.

Coagulant Aids.

The coagulation process is often enhanced through the use of coagulant aids (or flocculants). Sometimes, excess primary coagulant is added to promote large floc sizes and rapid settling rates. However, in some waters, even large doses of primary coagulant will not produce a satisfactory floc. In these cases, a polymeric coagulant aid can be added after the coagulant, to hasten reactions, to produce a denser floc, and thereby reducing the amount of primary coagulant required. Because of polymer “bridging,” small floc particles agglomerate rapidly into larger more cohesive floc, which settles rapidly. Coagulant aids also help to create satisfactory coagulation over a broader pH range. Generally, the most effective types of coagulant aids are
slightly anionic polyacrylamides with very high-molecular weights. In some clarification systems, non-ionic or cationic types have proven effective. The two types of coagulant aids discussed below are synthetic-organic and natural-organic.

Synthetic organic polymers are the most commonly used coagulant aids for coagulation and flocculation of heavy metal precipitates. This is because metallic precipitates typically possess a slight electrostatic positive charge resulting from charge density separation. The negatively charged reaction sites on the anionic polyelectrolyte attract and adsorb the slightly positive charged precipitate. Synthetic organic polyelectrolytes are commercially marketed in the form of dry powder, granules, beads, aqueous solutions, aqueous gels, and oil-in-water emulsions. Generally, liquid systems are preferred because they require less floor space, reduce labor requirements, and reduce the potential for side reactions because the concentrate can be diluted in the automatic dispensing systems. Typical dosage requirements for metals-containing waters are in the 0.5 to 2.0 mg/L range. Polyelectrolytes work most effectively at an alkaline and intermediate pH but lose effectiveness at pH levels lower than 4.5.

Natural organic coagulant aids are derived from natural products include starch, starch derivatives, proteins, and tannins. Of these, starch is the most widely used. The price per kilogram for these natural products tends to be low; however, dosage requirements tend to be high. In addition, because of the composition of natural products, they are more susceptible to microbiological attack, which can create storage problems.
ENHANCED COAGULATION REQUIREMENTS

The Stage 1 DBP regulations, require surface water systems that use conventional treatment or softening to remove a specified minimum percentage of the total organic carbon (TOC) from their raw water using a process called enhanced coagulation. TOC removal is required because other DBPs besides THMs and HAAs are formed when disinfectants react with a NOM, measured as TOC. The occurrence and health effects of these unidentified DBPs are unknown at this time. This part of the regulation is to control the formation of unknown, as well as known, DBPs by requiring that a minimum percentage of NOM in the raw water, measured as TOC, is removed by the plant.

The percentage of TOC removal required is based on the TOC and alkalinity levels of the plant’s raw water. These TOC removal requirements are broken down into nine different percent TOC removal categories. They are presented in a table for three different alkalinities and raw water TOC levels.

Plants that cannot meet the specified percent TOC removals will follow a “Step 2” procedure to determine what levels of TOC removal are “reasonable and practical” to achieve. The plant uses this information to request an alternative TOC removal requirement from its primacy regulatory agency.

The “Step 2” procedures consist of special jar tests to determine the maximum percent TOC removal that they can achieve by incremental increases in coagulant dose. Coagulant dose is increased in 10 mg/L increments until a specified pH level (depending on the raw water alkalinity) is achieved. Residual TOC levels in each jar are then measured, and an analysis is made of the point of diminishing return (PODR). The PODR is defined as when a 10 mg/L increase in coagulant does not decrease the residual TOC by more than 0.3 mg/L. This percentage TOC removal would then be considered “reasonable and practical” and would be used in discussions with the primacy agency relative to giving the plant an alternate enhanced coagulation requirement.

When a water system meets one of a variety of conditions it may be exempted from the enhanced coagulation part of the regulation. It was recognized that only the humic fraction of the raw water TOC is amenable to removal by enhanced coagulation. Plants, therefore, with high levels of nonhumic TOC may not be able to meet any of the enhanced coagulation removal requirements and could be exempt from this part of the regulations. Plants can assess the amount of humics in their raw water by measuring its specific UV absorbance or SUVA. SUVA is defined as the UV absorbance divided by the dissolved organic carbon (DOC). SUVAs of ~3 L/mg-cm represent largely nonhumic materials, and SUVAs in the 4-5 L/mg-cm range are mainly humic. SUVA values can also be used to request exemption from the regulations and to determine PODR.

Plants may find that achieving desired TOC removal will require some significant changes in plant process control procedures. Enhanced coagulation typically requires that additional coagulant and/or acid is added to depress the pH to a point where the TOC is removed in the coagulation process. As with control of DBPs, potential conflicts exist from the standpoint of plant process control procedures. Chemical feed rates needed to meet the turbidity performance goals may not be compatible with those needed for enhanced coagulation.
JAR TESTS

Jar testing traditionally has been done on a routine basis in most water treatment plants to control the coagulant dose. Much more information, however, can be obtained with only a small modification in the conventional method of jar testing. Jar testing is the quickest and most economical way to obtain good reliable data on the many variables affecting the treatment process, such as:
1. Determination of most effective coagulant;
2. Determination of optimum coagulation pH for the various coagulants;
3. Evaluation of most effective polymers;
4. Optimum point of application of polymers in treatment train;
5. Optimum sequence of application of coagulants, polymers and pH adjustment chemicals; and,

The jar test cannot duplicate exactly the actual plant conditions so the results of those chemical settings must be observed at the effluent of the sedimentation basin and adjustment made accordingly. Jar testing is highly recommended because correct chemical dosage can produce a high-quality water and be a cost-saving factor. Jar tests are an effective tool for predicting the results of the treatment process and evaluating various combinations of chemical feed and different chemicals. These test results are used to adjust or verify the feed rates in your treatment plant.

How to Evaluate Jar Test Results

Several factors should be considered such as rate of floc formation, type of floc particles, clarity of water between floc particles, size of floc, amount of floc formed, floc settling rate, and clarity of water above settled floc. The following comments will assist in evaluating the results.

Visible floc formation should begin shortly after the rapid mix portion of the jar test. During the flocculation mixing, a number of small particles will gradually clump together to form larger particles. Floc particles which are separate and fairly dense in appearance are usually better than floc particles that have a light, fluffy appearance. Large floc is impressive but it is neither necessary nor always desirable. Large, light floc does not settle as well as smaller, denser floc, and it is more subject to shearing (breaking up).

The water between the floc particles should be clear and not hazy or milky in appearance. The best chemical dosage is one which produces a finished water that meets the SDWA standards at the lowest cost. The floc should settle quickly after the mixing has stopped. Floc that remains suspended longer than 15 to 20 minutes would be carried over onto the filter media.

A jar test should be run at the beginning of each shift and more frequently when the raw water turbidity is high or changing. There is no substitute for experience in evaluating jar test data. Frequent tests will provide a basis for comparing results of the quality of finished water under different conditions and aid in fine tuning of the chemical feed dose rates. Always verify the effectiveness of a change in treatment based on a jar test result. To verify the jar test results with treatment plant performance, after the changes have been in effect for sufficient time to show results at the rapid mix chamber, collect a sample just down stream from the rapid mix chamber. Mix the sample on the jar test equipment under the same conditions as the original sample (not including the rapid mix simulation). This sample should show similar results to the original test.
Preparation before Jar Testing:
The jar test will only provide accurate results when properly performed. Because the jar test is intended to simulate conditions in your plant, developing the proper procedure is very important. Take time to observe what happens to the raw water in your plant after the chemicals have been added, then simulate this during the jar test. **THE RPM OF THE STIRRER AND THE MINUTES TO COMPLETE THE TEST DEPEND ON CONDITIONS IN YOUR PLANT.** If, for instance, your plant does not have a static or flash mixer, starting the test at high rpm would provide misleading results. This rule applies to flocculator speed, length of settling time and floc development. Again, operate the jar test to simulate conditions in YOUR plant.

Equipment List
(1) Six-Paddle Stirrer with Illuminated Base
(6) Graduated beakers, 1,000 mL or 2,000 mL square jars
(2) 10 mL graduated pipettes
(1) 1,000 mL graduated cylinders
(1) Scale for weighing coagulants
Lab apparatus to measure alkalinity, pH and turbidity

Stock Solutions
Stock solutions are prepared by dissolving 10.0 grams of alum, soda ash, lime, etc. into 1,000 mL distilled water. Each 1.0 mL of this stock solution will equal 10 mg/L when added to 1,000 mL of water to be tested.

Because dry polymers tend to be fed at much lower concentrations, a stock solution should contain 1.0 gram polymer to 1,000 mL distilled water. Each mL of this stock solution will equal 1.0 mg/L when added to 1,000 mL of water to be tested. You might want to use a 1.0 mL graduated pipette with 0.1 mL subdivisions when jar testing polymers. Liquid polymers should be added in the concentration recommended by the manufacturers.

Initial Testing
Prior to starting a jar test, a sample of the water to be tested should be analyzed for turbidity, temperature, pH, alkalinity, hardness, and color. The results should be recorded on a jar test results form. The amounts of chemicals to be added to each of the six beakers should be calculated and prepared for immediate addition to the beakers at the proper time.

Water containing an alkalinity of at least 25 mg/L and pH of around 7.0 will coagulate without the addition of lime, soda ash, etc. (Adding chemicals for pH adjustments, in pre-treatment, can be a major waste if they are not needed). Keep in mind that this will lower pH.

Color, as opposed to turbidity, is almost always removed best at depressed pH values. The addition of acid or larger doses of alum may be needed to accomplish color removal. Some color is removed at pH 7.0 but higher raw water colors may require a full unit lower.

If, on the other hand, you are removing manganese in the floc process, the higher you can elevate the pH and still form floc, the better the manganese removal.
JAR TESTING PROCEDURE for Alum

1. Collect at least a 2 gallon (8 L) sample of water to be tested.
2. Immediately measure six 1,000 mL quantities and place into six 1,000 mL beakers.
3. Place all six beakers on the stirring apparatus.
4. With a measuring pipette or microsyringe, add increasing dosages of the coagulant solution to the beakers as rapidly as possible. For example, add enough solution to be equivalent to a 10 mg/L dose in beaker #1 and add enough solution to be equivalent to a 20 mg/L in beaker #2.
5. Add standard solutions and feed rates for any other chemicals normally used.
6. Quickly lower the stirring paddles into the beakers and activate the paddles immediately for one minute at 100 rpm. The specified rate and time are typical of the action and detention time found in many treatment plants, but calculations have to be made to meet actual conditions present in your treatment process.
7. Reduce the mixer speed to 20 rpm for 20 minutes to simulate the flocculation basin conditions. Again, time and rate adjustments should be made according to the treatment plant conditions.
8. Record the time required for visible floc to form and describe the floc characteristics (pin-head sized floc, flake sized floc) during mixing.
9. Stop the stirrers. Allow the floc to settle for 30 minutes or for a period similar to your plant conditions. Observe and note how quickly the floc settled, the floc appearance, and the turbidity of settled water above the floc. You can remove a sample of the clear water with a pipette for testing.
10. Using the sample of clear water from each beaker, measure the turbidity, pH, and alkalinity of the water.
JAR TESTING PROCEDURE for Polyaluminum Chloride

Apparatus:

- 6 paddle gang stirrer
- 6 one liter beakers

Microsyringe*

- 25 microliter capacity for low dosages
- 50 microliter capacity for normal dosages
- 100 microliter capacity for high dosages

Raw Water sample
Rubber Discs or microscope slide covers
Polyaluminum chloride samples

Procedure:

1. Collect at least a 2 gallon (8 liters) sample of water to be tested.
2. Immediately measure six 1,000 mL quantities and place into six 1,000 mL beakers.
3. Place all six beakers on the stirring apparatus.
4. Using the microsyringe premeasure each dosage onto the microscope slide cover or rubber disc. Start the stirrer and carefully place the whole slide cover/disc into the beaker. For example, add enough solution to be equivalent to a 10 mg/L dose in beaker #1 and add enough solution to be equivalent to a 20 mg/L in beaker #2.
5. Make sure each cover/disc is completely below the surface.
6. Quickly lower the stirring paddles into the beakers and activate the paddles immediately for one minute at 100 rpm. The specified rate and time are typical of the action and detention time found in many treatment plants, but calculations have to be made to meet actual conditions present in your treatment process.
7. Reduce the mixer speed to 20 rpm for 20 minutes to simulate the flocculation basin conditions. Again, time and rate adjustments should be made according to the treatment plant conditions.
8. Record the time required for visible floc to form and describe the floc characteristics (pin-head sized floc, flake sized floc) during mixing.
9. Stop the stirrers. Allow the floc to settle for 30 minutes or for a period similar to your plant conditions. Observe and note how quickly the floc settled, the floc appearance, and the turbidity of settled water above the floc. You can remove a sample of the clear water with a pipette for testing.
10. Using the sample of clear water from each beaker, measure the turbidity, pH, and alkalinity of the water.
Determining Dosage

1 microliter (µL) of polyaluminum chloride into 1 liter of raw water is equal to 1 gallon per million gallons of water.

To calculate mg/L multiply the microliters x specific gravity.

Example: 10 µL of polyaluminum chloride (sp. Gr. = 1.24) added to 1 liter raw water

\[10 \text{ µL} \times 1.24 = 12.4 \text{ mg/L} \]

Allow samples to mix at plants normal mixing times and speeds.

Notes:

1. Only use microsyringes not micropipettes. Experience has shown that the use of micropipettes may cause errors in actual dosage.
2. Do not make dilutions of polyaluminum chlorides. A dilution may not represent actual performance.
3. Be sure to wash the microsyringe several times with deionized water immediately after each use.
JAR TESTING for Potassium Permanganate Demand

Stock Solutions
(Strong Stock Solution) - 5 grams potassium permanganate dissolved in 500 mL distilled water.

(Test Stock Solution) - 1 mL strong stock solution thoroughly mixed in 100 mL distilled water.

Each 10 mL of the test stock solution added to a 1,000 mL sample equals 1 ppm.

Stir the beakers to simulate the turbulence where the KMnO₄ is to be added and observe the color change.

As the iron and manganese begin to oxidize, the sample will turn varying shades of brown, indicating the presence of oxidized iron and or manganese. Samples which retain a brown or yellow color indicate that the oxidation process is incomplete and will require a higher dosage of KMnO₄. The end point has been reached when a pink color is observed and remains for at least 10 minutes. In the preceding table a pink color first developed in beaker #5 which had been dosed with 3 mL/0.3 ppm. If the first jar test does not produce the correct color change, continue with increased dosages.

When applying potassium permanganate to raw water, care must be taken not to bring pink water to the filter unless you have "green sand". Also, permanganate generally reacts more quickly at pH levels above 7.0.

A quick way to check the success of a KMnO₄ application is by adding 5 mL of the test stock solution to 1,000 mL finished water. If the sample turns brown there is iron or manganese remaining in the finished water. If the sample remains pink, oxidation is complete.

With proper application, potassium permanganate is an extremely useful chemical treatment. As well as being a strong oxidizer for iron and manganese, KMnO₄ used as a disinfectant in pre-treatment could help control the formation of trihalomethanes by allowing chlorine to be added later in the treatment process or after filtration. Its usefulness also extends to algae control as well as many taste odor problems.
SEDIMENTATION

Sedimentation, or clarification, is the process of letting suspended material settle by gravity. Suspended material may be particles, such as clay or silts, originally present in the source water. More commonly, suspended material or floc is created from material in the water and the chemical used in coagulation or in other treatment processes, such as lime softening.

Sedimentation is accomplished by decreasing the velocity of the water being treated to a point below which the particles will no longer remain in suspension. When the velocity no longer supports the transport of the particles, gravity will remove them from the flow.

Factors Affecting Sedimentation
Several factors affect the separation of settleable solids from water. Some of the more common types of factors to consider are:

Particle Size
The size and type of particles to be removed have a significant effect on the operation of the sedimentation tank. Because of their density, sand or silt can be removed very easily. The velocity of the water-flow channel can be slowed to less than one foot per second, and most of the gravel and grit will be removed by simple gravitational forces. In contrast, colloidal material, small particles that stay in suspension and make the water seem cloudy, will not settle until the material is coagulated and flocculated by the addition of a chemical, such as an iron salt or aluminum sulfate.

The shape of the particle also affects its settling characteristics. A round particle, for example, will settle much more readily than a particle that has ragged or irregular edges.

All particles tend to have a slight electrical charge. Particles with the same charge tend to repel each other. This repelling action keeps the particles from congregating into flocs and settling.

Water Temperature
Another factor to consider in the operation of a sedimentation basin is the temperature of the water being treated. When the temperature decreases, the rate of settling becomes slower. The result is that as the water cools, the detention time in the sedimentation tanks must increase. As the temperature decreases, the operator must make changes to the coagulant dosage to compensate for the decreased settling rate. In most cases temperature does not have a significant effect on treatment. A water treatment plant has the highest flow demand in the summer when the temperatures are the highest and the settling rates the best. When the water is colder, the flow in the plant is at its lowest and, in most cases, the detention time in the plant is increased so the floc has time to settle out in the sedimentation basins.

Currents
Several types of water currents may occur in the sedimentation basin:

- Density currents caused by the weight of the solids in the tank, the concentration of solids and temperature of the water in the tank.
- Eddy currents produced by the flow of the water coming into the tank and leaving the tank.

The currents can be beneficial in that they promote flocculation of the particles. However, water
currents also tend to distribute the floc unevenly throughout the tank; as a result, it does not settle out at an even rate.

Some of the water current problems can be reduced by the proper design of the tank. Installation of baffles helps prevent currents from short circuiting the tank.

Sedimentation Basin Zones
Under ideal conditions, the sedimentation tank would be filled with the water that has been coagulated, and the floc would be allowed to settle before any additional water is added. That is not possible for most types of water treatment plants.

Most sedimentation tanks are divided into these separate zones:

Inlet zone
The inlet or influent zone should provide a smooth transition from the flocculation zone and should distribute the flow uniformly across the inlet to the tank. The normal design includes baffles that gently spread the flow across the total inlet of the tank and prevent short circuiting in the tank. (Short circuiting is the term used for a situation in which part of the influent water exits the tank too quickly, sometimes by flowing across the top or along the bottom of the tank.) The baffle could include a wall across the inlet, perforated with holes across the width of the tank.

Settling Zone
The settling zone is the largest portion of the sedimentation basin. This zone provides the calm area necessary for the suspended particles to settle.

Sludge Zone
The sludge zone, located at the bottom of the tank, provides a storage area for the sludge before it is removed for additional treatment or disposal.

Basin inlets should be designed to minimize high flow velocities near the bottom of the tank. If high flow velocities are allowed to enter the sludge zone, the sludge could be swept up and out of the tank.

Sludge is removed for further treatment from the sludge zone by scraper or vacuum devices which move along the bottom.

Outlet Zone
The basin outlet zone or launder should provide a smooth transition from the sedimentation zone to the outlet from the tank. This area of the tank also controls the depth of water in the basin. Weirs set at the end of the tank control the overflow rate and prevent the solids from rising to the weirs and leaving the tank before they settle out. The tank needs enough weir length to control the overflow rate, which should not exceed 20,000 gallons per day per foot of weir.

Selection of Basin
There are many sedimentation basin shapes. They can be rectangular, circular, and square.

Rectangular Basins
Rectangular basins are commonly found in large-scale water treatment plants. Rectangular tanks are popular as they tend to have:
• High tolerance to shock overload;
• Predictable performance;
• Cost effectiveness due to lower construction cost;
• Lower maintenance; and,
• Minimal short circuiting.

Circular and Square Basins
Circular basins are frequently referred to as clarifiers. These basins share some of the performance advantages of the rectangular basins, but are generally more prone to short circuiting and particle removal problems. For square tanks the design engineer must be certain that some type of sludge removal equipment for the corners is installed.

High Rate Settlers
High rate tube settlers are designed to improve the characteristics of the rectangular basin and to increase flow through the tank. The tube settlers consist of a series of tubes that are installed at a 60 degree angle to the surface of the tank. The flow is directed up through the settlers. Particle have a tendency to flow at a angle different than the water and to contact the tube at some point before reaching the top of the tube. After particles have been removed from the flow and collected on the tubes, they tend to slide down the tube and back into the sludge zone.

Solids Contact Units
A solids contact unit combines the coagulation, flocculation, and sedimentation basin in one unit. These units are also called upflow clarifiers or sludge-blanket clarifiers. The solids contact unit is used primarily in the lime-soda ash process to settle out the floc formed during water softening. Flow is usually in an upward direction through a sludge blanket or slurry of flocculated suspended solids.
FILTRATION

Removal of suspended solids by filtration plays an important role in the natural treatment of groundwater as it percolates through the soil. It is also a major part of most water treatment. Groundwater that has been softened or treated through iron and manganese removal will require filtration to remove floc created by coagulation or oxidation processes. Since surface water sources are subject to run-off and do not undergo natural filtration, it must be filtered to remove particles and impurities.

Filtration Process
The filter used in the filtration process can be compared to a sieve or microstrainer that traps suspended material between the grains of filter media. However, since most suspended particles can easily pass through the spaces between the grains of the filter media, straining is the least important process in filtration. Filtration primarily depends on a combination of complex physical and chemical mechanisms, the most important being adsorption. Adsorption is the process of particles sticking onto the surface of the individual filter grains or onto the previously deposited materials. The forces that attract and hold the particles to the grains are the same as those that work in coagulation and flocculation. In fact, some coagulation and flocculation may occur in the filter bed, especially if coagulation and flocculation of the water before filtration was not properly controlled. Incomplete coagulation can cause serious problems in filter operation.

Types of Filters
Several types of filters are used for water treatment. The earliest ones developed were the slow sand filters. They typically have filter rates of around 0.05 gpm/ft² of surface area. This type of filter requires large filter areas. The top several inches of the sand has to be removed regularly—usually by hand—due to the mass of growing material (schmutzdecke) that collects in the filter. The sand removed is usually washed and returned to the filter. These filters are still in use in some small plants, especially in the western U.S. as well as in many developing countries. They may also be used as a final step in wastewater treatment.

Most filters are classified by filtration rate, type of filter media, or type of operation into:

A. Gravity Filters
 a. Rapid Sand Filter
 b. High Rate Filter
 -Dual media
 -Multi-media

B. Pressure Filters
 -Sand or Multi-media

Rapid Sand Filters
Rapid sand filters can accommodate filter rates 40 times those of slow sand filters. The major parts of a rapid sand filter are: filter tank or filter box; filter sand or mixed-media; gravel support bed; underdrain system; wash water troughs; and filter bed agitators.

The filter tank is generally constructed of concrete and is most often rectangular. Filters in large plants are usually constructed next to each other in a row, allowing the piping from the sedimentation basins to feed the filters from a central pipe gallery. Some smaller plants are designed with the filters forming a square of four filters with a central pipe gallery feeding the filters from a center well.
Filter Sand
The filter sand used in rapid sand filters is manufactured specifically for the purpose of water filtration. Most rapid sand filters contain 24-30 inches of sand, but some newer filters are deeper. The sand used is generally 0.4 to 0.6 mm in diameter. This is larger than the sand used in slow rate filtration. The coarser sand in the rapid filters has larger voids that do not fill as easily.

Graded Gravel
The gravel installed under the sand layer(s) in the filter prevents the filter sand from being lost during the operation. The under-gravel also distributes the backwash water evenly across the total filter.

This under-gravel supports the filter sand and is usually graded in three to five layers, each generally 6-18 inches in thickness, depending on the type of underdrain used.

Underdrain
The filter underdrain can be one of many types, such as: pipe laterals; false floor; and Leopold system.

Pipe laterals
A pipe lateral system uses a control manifold with several perforated laterals on each side. Piping materials include cast iron, asbestos cement, and PVC. The perforations are usually placed on the underside of the laterals to prevent them from plugging with sand. This also allows the backwash to be directed against the floor, which helps keep the gravel and sand beds from being directly disturbed by the high velocity water jets.

False floor
The false floor design of a filter underdrain is used together with a porous plate design or with screens that retain the sand when there is no undergravel layer. This type of underdrain allows the plenum or open space under the floor to act as the collection area for the filtered water and for the distribution of the filter backwash water.

Leopold system
The Leopold system consists of a series of clay or plastic blocks that form the channels to remove the filtered water from the filter and distribute the backwash water. This type of underdrain is generally used with an undergravel layer, although some new designs allow for sand retention without gravel.

Washwater Troughs
Washwater troughs placed above the filter media collect the backwash water and carry it to the drain system. Proper placement of these troughs is very important to ensure that the filter media is not carried into the troughs during the backwash and removed from the filter. The wash troughs must be installed at the same elevation so that they remove the backwash evenly from the filter and so that an even head is maintained across the entire filter. These backwash troughs are constructed from concrete, plastic, fiberglass, or other corrosion-resistant materials.

Surface Wash
During the operation of a filter, the upper six-to-ten inches of the filter media remove most of the suspended material from the water. It is important that this layer be thoroughly cleaned during
the backwash cycle. Normal backwashing does not, in most cases, clean this layer completely; therefore, some method of agitation is needed to break up the top layers of the filter and to help the backwash water remove any material caught there.

The surface wash system consists of a series of pipes installed in the filter that introduce high velocity water or air jet action into the upper layer of the filter. This jet action will generally be supplied by rotating arms that are activated during the backwashing of the filter.

A newer design of surface wash uses compressed air to mix the upper layer and loosen the particles from the sand so that the backwash water can remove the particles more easily. This air wash generally is turned on before the backwash cycle. If both are used at the same time, some sand may be washed away. The compressed air rate can be two-to-five cubic feet per minute per square foot (cfm/ft²) of filter surface, depending on the design of the filter.

High Rate Filters

High rate filters, which operate at a rate three-to-four times that of rapid sand filters, use a combination of different filter media, not just sand. The combinations vary with the application, but generally they are sand and anthracite coal. Multi-media or mixed-media filters use three or four different materials, generally sand, anthracite coal, and garnet.

In rapid sand filters, finer sand grains are at the top of the sand layer with larger grains farther down into the filter. As a result, the filter removes more suspended material in the first few inches of the filter. In the high rate filter, the media size decreases. The top layer consists of a coarse material with the finer material farther down, allowing the suspended material to penetrate deeper into the filter.

The material in a filter bed forms layers in the filter, depending on their weight and specific gravities. In the coarse layer at the top, the larger suspended particles are removed first, followed by the finer materials. This allows for longer filter runs at higher rates than is possible with rapid sand filters.

The type of filter media used in a high rate filter depends on many factors, including the raw-water quality, raw-water variations, and the chemical treatment used. Pilot studies help the operator evaluate which material, or combination of materials, will give the best result.

Pressure Filters

Pressure filters fall into two categories: pressure sand and diatomite filters.

Pressure sand filters

This type of filter is used extensively in iron and manganese removal plants.

A pressure sand filter is contained under pressure in a steel tank, which may be vertical or horizontal, depending on the space available. As with gravity filters, the media is usually sand or a combination of media. Filtration rates are similar to gravity filters.

These filters are commonly used for iron and manganese removal from groundwater, which is first aerated to oxidize the iron or manganese present, then pumped through the filter to remove the suspended material.
Because the water is under pressure, air binding will not occur in the filter. However, pressure filters have a major disadvantage in that the backwash cannot be observed; in addition, cracking of the filter bed can occur quite easily, allowing the iron and manganese particles to go straight through the filter. When using pressure filters for iron and manganese removal, the operator must regularly measure the iron and manganese concentration of the filter effluent and backwash the filter before breakthrough occurs. Because of these limitations, pressure filters must not be used to treat surface water.

Diatomaceous Earth Filters
This type of filter is commonly used for the treatment of swimming pools. The process was developed by the military during World War II to remove microorganisms that cause amoebic dysentery from water used in the field.

Filtration Processes
Two basic types of filtration processes are currently used in the U.S. Conventional filtration, the traditional design for many years, provides effective treatment for just about any range of raw-water turbidity. Its success is due partially to the sedimentation that precedes filtration and follows the coagulation and flocculation steps. Sedimentation, if operated properly, should remove most of the suspended material. After sedimentation, the water passing through to the filters should not have a turbidity higher than 10-to-15 NTU. Rapid sand filters were once used in the conventional process, but many have been converted to multi-media filters in an attempt to increase plant capacity.

In the other type of filtration process--direct filtration--no sedimentation follows the coagulation phase. Direct filtration is designed to filter water with an average turbidity of less than 25 NTU. Dual and multi-media filters are used with direct filtration. They are able to remove more suspended material per cubic foot of filter media than sand filters. Direct filtration plants have a lower capital cost. However, the process cannot handle large variations in raw water turbidity.

Filtration Operation
Filtration operation is divided into three steps: filtering, backwashing, and filtering to waste.

Filter Control
Control of the filter operation requires the following equipment:
- Rate of flow controller;
- Loss of head indicator; and,
- On-line turbidimeter

Rate of flow controllers
Flow rates through filters are controlled by one of two different methods:

Declining rate
This method of control is used where the head loss through the plant is quite large. It allows the filter head to increase until the filter becomes plugged with particles and the head loss is too great to continue operation of the filter. The rate through the filter is much greater in the beginning of a filter run than at the end when the filter is dirty. This method tends to be the most commonly installed in new filter plants.

Constant rate
This type of control monitors the level of water on the top of the filter and attempts to control this level from the start of the operation to the end. This is accomplished by the controller operating a valve on the effluent of the filter. The valve will be nearly closed at the start of the filter run and fully open at the end. This design is used when the head or pressure on the filter is limited.

Both controllers consist of a venturi tube or some other type of metering device as well as a valve to control the flow from the filter. In most cases, the valve is controlled by an automatic control device, often an air-actuated type valve that is controlled by the flow tube controller.

Loss of head indicator
As filtration proceeds, an increasing amount of pressure, called head loss across the filter, is required to force the water through the filter. The **head loss** should be continuously measured to help determine when the filter should be backwashed. Usually the difference in the head is measured by a piezometer connected to the filter above the media and the effluent line.

In-line turbidimeter
Turbidity in water is caused by small suspended particles that scatter or reflect light so that the water appears to be cloudy. Turbidity of the filtered water may shelter bacteria, preventing chlorine from reaching it during the final disinfection process. The turbidity of the filtered water is one of the factors that determines the length of a filter run. At some point, the suspended material will start to break through the filter media and increase the turbidity of the filter effluent. At this time, the filter should be backwashed. Continuous turbidity monitors provide information about when the filter is approaching this point so that the operators can start the backwash before the turbidity is too great. Turbidity measurements will also indicate whether the coagulation and other treatment processes are operating properly.

Filtration Process
Water—either from the source or, more commonly, from pre-treatment processes—is applied to the top of the filter; it then flows downward. The water level above the filter bed is usually kept at 2 to 6 feet. When the filtration is started after being backwashed, there will be little head loss. In filters with a control valve installed on the filter effluent pipe, the filter flow is restricted during this time. The control valve also has the important function of preventing filter surges, which could disturb the media and force floc through the filter.

The rate of flow on a filter depends on the type of filter. A rapid sand filter will have a flow of 2 to 3 gpm/square foot of filter area. The high rate filter may have 4 to 6 gpm/square foot applied to the surface. A constant rate flow valve is almost fully closed when a filter is clean so that the desired water level on top of the filter is maintained. As the filter becomes dirty with suspended material, the valve opens gradually until the increase in the water level above the filter indicates that the filter needs backwashing.

In filters with variable declining rate flow control, the filters are allowed to take on as much water as they can handle. As the filters become dirty, both the headloss and the depth of the water on the surface increase until the filters need backwashing. This method is generally preferred because it requires less operator attention. With this method, a filter accepts as much flow as it can handle. As the filter becomes dirty, the flow through the filter becomes less and, if the plant has more than one filter, additional flow redistributes across the other filters. A flow
restrictor is placed in the filter effluent pipe to prevent a filter inflow that is too great for the filter.

In most cases the filter backwash rate will not break up the mass on the top of the filter. The design engineer will recommend the installation of a surface wash of some type, the most common being a set of rotary arms that are suspended above the media during filtration. During filter backwash, the media expands upwards and around the washing arms. A newer method of surface wash involves using air scour before the water wash. This is a very efficient method but requires the installation of a large air blower to produce the air. The normal design for the air wash will be 2 to 5 cubic feet of air per square foot of filter area.

The filter should be backwashed when the following conditions have been met:
- The head loss is so high that the filter no longer produces water at the desired rate; and/or
- Floc starts to break through the filter and the turbidity in the filter effluent increases; and/or
- A filter run reaches a given hour of operation.
- If a filter is taken out of service for some reason, it must always be backwashed prior to being put on line.

The decision to backwash the filter should not be based on only one of the above conditions. If a filter is not backwashed until the headloss exceeds a certain number of feet, the turbidity may break through and cause the filter to exceed the standard of 0.5 NTU of turbidity. Similarly, depending on filter effluent turbidity alone can cause high head loss and decreased filter flow rate, which can cause the pressure in the filter to drop below atmospheric pressure and cause the filter to air bind and stop filtering.

If the water applied to a filter is very good quality, the filter runs can be very long. Some filters can operate longer than one week before needing to be backwashed. However, this is not recommended as long filter runs can cause the filter media to pack down so that it is difficult to expand the bed during the backwash.

Backwashing Process

The normal method for backwashing a filter involves draining the water level above the filter to a point 6 inches above the filter media. The surface wash is then turned on and allowed to operate for several minutes to break up the crust on the filter. After that, the backwash valve is opened, allowing backwash water to start flowing into the filter and start carrying suspended material away from the filter. For a filter with an air wash instead of a water-surface wash, the filter backwash water and the air wash should not be used together. This would be possible only if some means of controlling the media carryover is installed.

The time elapsed from when the filter wash is started until full flow is applied to the filter should be greater than one minute. After a few minutes, the filter backwash valve should be fully opened to allow full expansion of the filter media. Generally, this expansion will be from 20 to 40% over the normal filter bed volume. The expansion needed will depend on how much agitation is needed to suspend the filter media to remove suspended material trapped in the filter. With a multi-media filter, the rate must be high enough to scrub the interface between the coal and the sand, where the highest amount of suspended solids will be removed from the media. The filter will be washed for 10 to 15 minutes, depending on the amount of solids that
must be removed. The best way to determine how long the filter should be washed is to measure the turbidity of the backwash water leaving the filter. In most cases, a filter is washed too long. This could be costly. Too much backwash water is used, and it must be treated after use. Backwash valves must be opened slowly. Opening the valves too rapidly can cause serious damage to the filter underdrain, filter gravel, and filter media.

Disposal of Filter Backwash Water

Water from the filter backwash cannot be returned directly to the environment. Normally the water is discharged into a backwash tank and allowed to settle. The supernatant, or cleared liquid, is then pumped back to the head of the treatment plant at a rate not exceeding 10% of the raw water flow entering the plant. The settled material is pumped to a sewer or is treated in the solids-handling process of the plant. This conserves most of the backwash water and eliminates the need to obtain a pollution discharge permit from the West Virginia Department of Environmental Protection (WVDEP) for the disposal of the filter backwash water.

Since backwash is a very high flow operation, the surges that are created from the backwash coming from the filter must not be allowed to enter the head of the plant. Therefore, the spent backwash water must be stored in storage tanks and returned slowly to the treatment process.

Filtering to Waste

When filtration is started after backwash, filtered water should be wasted until the turbidity in the effluent meets standards. Depending on the type of filter, this may last from two to 20 minutes. This wasting is needed as some suspended material remains in the filter media following the backwash. The media needs to become somewhat sticky again to start to capture the suspended material. Also, the filtration rate is higher in a clean filter, causing more material to be swept from the filter during the start-up.

Filtration should always be started slowly after a backwash to prevent breakthrough of suspended material.

Filter Aids

Sometimes, when water passes through a filter, the floc is torn apart into smaller particles that will penetrate deeply into the filter media, causing premature turbidity breakthrough. This will require more frequent filter backwashing of the filter and use of large volumes of backwash water to be able to remove the floc that has penetrated deeply into the filter bed.

A filter aid is a material that adds strength to the floc and prevents its breakup. Generally, a polymer is used as a filter aid because it creates strong bonds with the floc. Polymers are water-soluble, organic compounds that can be purchased in either wet or dry form.

Polymers have very high molecular weight and cause the floc to coagulate and flocculate quickly. Polymers can have positive or negative charges, depending on the type needed to cause attraction to the specific floc filtered.

When used as a filter aid, the polymer strengthens the bonds and prevents the shearing forces in the filter from breaking the floc apart. For best results, the polymer should be added just ahead of the filter. A normal dose of polymer for filter aiding will be less than 0.1 ppm, but the exact dose will be decided by the result of a jar test and by experimentation in the treatment plant. Too
much polymer will cause the bonds to become too strong, which may then cause the filter to plug, especially the top few inches of the filter media.

Filter Operating Problems
There are three major types of filter problems. They can be caused by chemical treatment before the filter, control of filter flow rate, and backwashing of filters.

Chemical treatment before the filter
The coagulation and flocculation stages of the water treatment must be monitored continuously. Adjustments in the amount of coagulant added must be made frequently to prevent the filter from becoming overloaded with suspended material. This overload may cause the filter to prematurely reach its maximum headloss.

If there is early turbidity breakthrough in the filter effluent, more coagulant may have to be added to the coagulation process. There may be a need for better mixing during the coagulation or the addition of more filter aid. If there is a rapid increase in filter head loss, too much coagulant may be clogging the filter. Less coagulant or less filter aid should be used. The operator needs to learn to recognize these problems and choose the proper corrections.

Control of filter flow rate
When a filter is subjected to rapid changes in flow rate, the turbidity of the effluent may be affected. The dirtier the filter media, the greater the effect.

When a plant flow changes, the filter flow also has to change to produce the water needed. If an increase is necessary, the flow should, if possible, be increased gradually over a ten-minute period to reduce the impact on the filter. Addition of filter aids may also reduce the impact on the filter effluent.

When backwashing a filter, and therefore temporarily taking it out of service, the remaining filter(s) must pick up the additional flow. This can cause an abrupt change in flow that will cause turbidity breakthrough. This problem can be avoided by keeping one filter in reserve to accept this additional flow. If the plant has a backwash storage basin, this will also prevent surges to the filters.

Many plants are not operated continuously, and the start-up at the beginning of the day will cause a surge to the filter(s). The filters should be backwashed before putting them back into operation or operated to waste until the effluent meets the standards.

Backwashing of filters
Backwashing of the filters is the single most important operation in the maintenance of the filters. If the filter is not backwashed effectively, problems may occur that may be impossible to correct without totally replacing the filter media. These problems could be caused by improper backwashing procedures:

1. Mud balls are formed by the filter media cementing together with the floc that the filter is supposed to remove. If the filter is backwashed effectively, the mud balls are broken apart and removed. As the balls gain weight, they will settle to the bottom of the filter and occupy valuable filter volume. This will cause the flow to increase in the areas of the filter that have not been
plugged. Additional problems, such as filter cracking and separation of the media from the filter walls may also be the result of mud-ball formation.

2. Filter bed shrinkage or compaction can result from ineffective backwashing. Media grains in a clean filter rest directly against each other with very little compaction. Filter media in a dirty filter are surrounded by a soft layer which causes it to compact. This causes filter bed cracking and separation of the filter media from the walls of the filter. When the filter is cracked, it is obvious that the filter will short circuit. The flow will seek the crack and go straight through, resulting in excessive turbidity in the effluent.

3. Filter bed shrinkage or compaction can result from ineffective backwashing. Media grains in a clean filter rest directly against each other with very little compaction. Filter media in a dirty filter are surrounded by a soft layer which causes it to compact. This causes filter bed cracking and separation of the filter media from the walls of the filter. When the filter is cracked, it is obvious that the filter will short circuit. The flow will seek the crack and go straight through, resulting in excessive turbidity in the effluent.

4. Air binding of the filter is not common as long as the filter is washed regularly. Air binding is the result of pressure in the filter becoming negative during operation. This causes the air dissolved in the water to come out of the solution and become trapped in the filter, resulting in resistance and short filter runs. This negative head generally occurs in a filter that has less than five feet of head above the unexpanded filter bed. If a filter head of five feet is not possible, filter backwash should be started at a lower head loss than normal.

Air binding can also be caused by the water being cold and super-saturated with air. This air bubbles out as the water warms up. It is not possible for the operator to control this situation. If it happens, the filter must be backwashed more frequently to correct the filter air binding.

5. Media loss is normal in any filter. Some are lost each time the filter is backwashed, especially if the filter surface wash is used. If a large amount of media is being lost, the method of washing should be inspected and corrected. The bed should not have to be expanded more than 20% during the backwash cycle. It may help to turn off the surface wash approximately two minutes before the end of the backwash. If this does not correct the problem, the filter troughs may have to be raised to prevent the excessive media loss.

After a well-operated filter backwash, the filter should be level and smooth with no cracks or mud balls at the surface. A good bed will appear to move laterally during the backwash and there will be no boils at the surface. The filter should clear up evenly cleaning. If some areas are not clean, there could be an under-drain problem.

Filtration Treatment Technologies Listed in the SWTR
Filtration is the most commonly used treatment for reducing turbidity and microbial contaminant levels in domestic water supplies. Common drinking water filtration processes involve passing water through a filter media to remove suspended particulate material, larger colloidal materials, and, for some filter media, to reduce levels of smaller colloidal and dissolved contaminants. Examples of suspended particulates include clay and silt, microorganisms, humic and other aggregated organic materials, and aluminum and iron oxide precipitates. Familiar filter media include silica sand, diatomaceous earth, garnet or ilmenite, and a combination of coarse anthracite coal overlaying finer sand. Filtration may involve single media, dual media (e.g., coal-
sand), and tri-media (e.g., an added third layer of sand). Filtration may be rapid or slow, depending upon the application, and may involve different removal processes, cleaning methods, and operation methods.

The filtration technologies discussed are used to remove suspended particulate matter from water. For filtration processes that involve the addition of a chemical coagulant, coagulation refers to the complex over-all process of particle aggregation within a water being treated, including coagulant formation, particle destabilization (surface charge alteration of suspended particles), and inter-particle collisions. Flocculation may be considered a part of the coagulation process and refers to the process of promoting inter-particle collisions and thus the aggregation of larger particles (floc). Larger suspended particles may be removed by simple filtration or by sedimentation (gravity settling) or flotation (floc rises to the surface and is skimmed off). Simple filtration involves the physical trapping of suspended particles that are larger than the pore volumes of the filter media; the bulk water passes through unimpeded and leaves the particles behind. As finer suspended particles pass through the filter medium, they are destabilized, resulting in coagulation and adherence to the filter medium. In the case of slow sand filtration, which does not involve the addition of coagulants, colloidal and dissolved organic materials may be removed by biological processes in the schmutzdecke (“black layer” or biologically-active layer) and in the filter medium below. In the case of direct filtration, which requires influent water with much less turbidity, the coagulation and flocculation step is followed immediately by filtration. Since there is less aggregated material to remove, sedimentation or flotation is not required to prolong the filter cycle. Some dissolved chemicals may be removed by chemical sorption at the surface of the filter media, especially in the cases of higher surface area filter media (e.g., fine sand and diatomaceous earth), but these processes account for much less of the bulk contaminant removal compared to physical sorption processes.

For the purposes of meeting the performance criteria under the SWTR and to protect public health, disinfection treatment is commonly applied following filtration.

Conventional filtration

Conventional filtration includes pre-treatment steps of chemical coagulation, rapid mixing, and flocculation, followed by floc removal via sedimentation or flotation. After clarification, the water is then filtered. Common filter media include sand, dual-media, and tri-media. Design criteria for specific sites are influenced by site-specific conditions and thus individual components of the treatment train may vary in design criteria between systems. Conventional treatment has demonstrated removal efficiencies greater than 99% for viruses and 97 to 99.9% (rapid filtration with coagulation and sedimentation) for *Giardia*.

There are a variety of coagulation/filtration package plants applicable to small systems. In package plants that utilize sedimentation, the sedimentation step usually occurs in tube settlers. In “dual-stage filtration”, the sedimentation step is replaced by a passive flocculation/clarification step that occurs in an initial “depth clarifier” tank. The clarified water is then passed through a depth filter. Other modes of clarification are possible, including the use of the various upflow and downflow flocculation/filtration processes, also known as “roughing filter” processes. Typically, roughing filters are not as versatile as sedimentation or flotation, but some varieties may perform comparably. Coagulation/filtration package units have demonstrated the ability to effectively remove turbidity, color, disinfection by-product precursors, viruses, bacteria, and protozoa (e.g., *Cryptosporidium* and *Giardia* cysts).
Conventional filtration is the most widely used technology for treating surface water supplies for turbidity and microbial contaminants. Although conventional filtration has the advantage that it can treat a wide range of water qualities, it has the disadvantage that it requires advanced operator skill and has high monitoring requirements. It is reiterated that the performance of conventional filtration is extremely sensitive to the proper management of the coagulation chemistry involved; if the coagulation step is disrupted or improperly executed, the removal efficiencies for turbidity and microbiological contaminants decrease dramatically in a matter of minutes.

Direct filtration
Direct filtration has several effective variations, but all include a pre-treatment of chemical coagulation followed by rapid mixing. The water is then filtered through dual- or mixed-media using pressure or gravity filtration units. Pressure units, which are used primarily by small systems, have the advantage of not requiring repumping for delivery of the filtrate to the point of use. Gravity units have the advantage of allowing easy visual inspection of the filter medium during and after backwash. Besides the mode of filtration, variations of direct filtration include filter media and mixing requirements. In-line filtration is the simplest form of direct filtration and consists of filters preceded by direct influent chemical feed and static mixing. In general, direct filtration usually requires low turbidity raw water and is attractive because of its low cost relative to conventional treatment.

The National Research Council has suggested that small systems not use direct filtration for waters with average turbidities above 10 NTU or maximum turbidities above 20 NTU. Two other important considerations are color and algae. Since color removal requires coagulant additions in proportion to the degree of color, an upper limit of color is appropriate for direct filtration. Direct filtration has demonstrated removal efficiencies of 90 to 99% for viruses, 50% for Giardia without coagulation, and 95-99% for Giardia with coagulation pre-treatment.

Direct filtration has the disadvantage that it requires advanced operator skill and has high monitoring requirements. It is reiterated that the performance of direct filtration is extremely sensitive to the proper management of the coagulation chemistry involved; if the coagulation step is disrupted or improperly executed, the removal efficiencies for turbidity and microbiological contaminants decrease dramatically in a matter of minutes.

Slow sand filtration
Slow sand filters are simple, are easily used by small systems, and have been adapted to package plant construction. Slow sand filters are similar to single media rapid-rate filters in some respects, but there are crucial differences in functional mechanisms (other than the obvious difference in flow rate): the schmutzdecke removes suspended organic materials and microorganisms by biodegradation and other biological processes, instead of relying solely on simple filtration or physico-chemical sorption. Advantages of slow sand filtration include its low maintenance requirements (since it does not require backwashing and requires less frequent cleaning) and the fact that its efficiency does not depend on actions of the operator. However, slow sand filters do require time for the schmutzdecke to develop after cleaning, during which the filtration performance steadily improves; this interval is called the “ripening period”. The ripening period can last from six hours to two weeks, but typically requires less than two days. A two day filter-to-waste period is recommended for typical sand filter. Since few remedies are
available to an operator when the process is ineffective, slow sand filtration should be used with caution and should not be used without pretreatment or process modifications (e.g., GAC layer addition) unless the raw water is low in turbidity, algae, and color. Package plant versions with a granular activated carbon layer located beneath the slow sand filter can adsorb organic materials that are resistant enough to biodegradation to pass through the schmutzdecke. When used with source water of the appropriate quality, slow sand filtration may be the most suitable filtration technology for small systems. Slow sand filtration has demonstrated removal efficiencies in the 90 to 99.9999% range for viruses and greater than 99.99% for Giardia.

Diatomaceous earth filtration

Diatomaceous earth (DE) filtration, also known as pre-coat or diatomite filtration, can be used to directly treat low turbidity raw water supplies. DE filters consist of a layer of DE (about 1/8-inch thick) supported on a septum or filter element. This pre-coat layer is subject to cracking and must be supplemented by a continuous-body feed of diatomite to maintain porosity of the filter. Problems inherent in maintaining the filter cake have limited the use of DE filtration. DE filtration that does not recycle filtered water may not be appropriate for small systems that filter intermittently, since the filter cake must be changed and the septum must be cleaned after each break in filtration.

DE filtration is very effective for removing Giardia cysts, but filtration with plain DE has indicated the inability to remove very small particles, e.g., viruses. Research has shown that modifications can lead to 99% virus removal. Since chemical coagulation is not required, DE filtration is very attractive as a small systems technology and has been used successfully by small systems for many years. Waters that are low in turbidity, color and other organic matter (DBP precursors) are suitable for DE filtration.

Membrane Processes

The four treatments listed below are membrane processes, which make use of pressure-driven semi-permeable membrane filters. Membranes are manufactured in a variety of configurations, materials and pore size distributions. The selection of membrane treatment for a particular drinking water application would be determined by a number of factors, such as: targeted material(s) to be removed, source water quality characteristics, treated water quality requirements, membrane pore size, molecular weight cutoff (MWC), membrane materials and system/treatment configuration.

The membrane technologies listed below have been historically employed for specific drinking water uses:

- **reverse osmosis (RO)** treatment in a high pressure mode, in removal of salts from brackish water and seawater;
- **nanofiltration (NF)**, also referred to as membrane softening or low pressure RO, in removal of calcium and magnesium ions (hardness) and/or natural organics and disinfection byproducts control;
- **ultrafiltration (UF)**, characterized by a wide band of MWCs and pore sizes, for removal of specific dissolved organics (e.g., humic substances, for control of disinfection byproducts in finished water) and for removing particulates; and,
- **microfiltration (MF)**, as with ultrafiltration utilizing low operating pressures, for removal of particulates including pathogenic cysts.
Pre-filtration and scale-inhibiting chemical addition may be utilized to protect membranes from plugging effects, fouling and/or scaling, and to reduce operational and maintenance costs. For the purposes of meeting the performance criteria under the SWTR and as a safety measure, a disinfectant is commonly applied following membrane treatment to protect distributed water quality.

Reverse Osmosis (RO)

Due to typical RO membrane pore sizes and size exclusion capability (in the metallic ion and aqueous salt range), RO filtration is effective for removal of cysts, bacteria and viruses.

Nanofiltration (NF)

Due to typical NF membrane pore sizes and size exclusion capability (1 nanometer range, e.g., organic compounds), NF is effective for removal of cysts, bacteria and viruses.

Ultrafiltration (UF)

Due to typical UF membrane pore sizes and size exclusion capability (e.g., 0.01 micron, molecular/ macromolecular range), UF is effective for absolute removal of *Giardia* cysts and partial removal of bacteria and viruses, and when used in combination with disinfection appears adequate for removal/inactivation of these microorganisms. Tests have also shown that filtrate turbidity may be kept consistently at or below 0.1 NTU.

Microfiltration (MF)

Due to typical MF membrane pore sizes and size exclusion (e.g., 0.1 to 0.2 micron, macromolecular/microparticle range), MF is effective for absolute removal of *Giardia* cysts and partial removal of bacteria and viruses, and when used in combination with disinfection appears adequate for removal/inactivation of these microorganisms. Tests have also determined that MF filtrate turbidity may be kept below 0.2 NTU and typically at or below 0.1 NTU.

Bag filtration

Bag filtration systems are based on the physical screening process to remove particles. If the pore size of the bag filter is small enough, parasitic removal will occur. In a bag filtration unit system, water to be treated passes through a bag-shaped filtration unit where the particulates are collected on the bag’s filter media while allowing the filtered water to pass to the outside of the bag. Bag filters are manufactured and supplied by a variety of companies with different micron ratings (typically from 1 to 40 micron) and material compositions. The sizing of the bag filtration component is conditional on the on raw water quality, including the amount of particulate matter and the turbidity. Unless the quality of the raw water precludes pre-treatment, EPA recommends prefiltration of the raw water using sand or multimedia filters, followed by preliminary bag or cartridge filters of 10 micron or larger pore size, and the use of 15 micron filters as final filters to increase particulate removal efficiencies and to extend the life of the filter. Contingent on the filter manufacturer, bag filters can accommodate turbidity units from 0.1 to 10.0 NTU and flow between 10 and 50 gpm. However, the bag filters will only last a few hours when turbidity consistently exceeds 1 NTU.

Cartridge filtration

Cartridge Filtration, similar to bag filtration, relies on the physical screening process to remove particles. If the pore size of the filter is small enough, parasites will not pass through the filter. Typical cartridge filters are pressure filters with pleated fabrics, membranes, or strings wrapped around a filter element and housed in a pressure vessel. The pleating allows for higher surface
area for filtration. These filters are manufactured and supplied by a variety of companies with different micron ratings (0.3 to 80 micron) and materials. Similar to bag filtration, these units are very compact and do not require much space.

The pore size rating of the cartridge filtration component used is dependent on the on raw water quality, including the amount of particulate matter and the turbidity. Depending on the quality of the raw water, prefiltration of the raw water using sand or multimedia filter, followed by bag or cartridge filters of 10 microns or larger pore size as preliminary filter, and the use of 1-5 micron filters as final filters are recommended to increase particulate removal efficiencies and to extend the life of the filter.

Cartridge filters can be used for removal of *Giardia*. Filtration studies conducted by EPA to determine *Cryptosporidium* using beads as surrogates showed that cartridge filtration with 2 micron rated units exhibited log removals of 3.51 and 3.68.
INDIVIDUAL FILTER SELF ASSESSMENT

Based on individual filter monitoring requirements in the IESWTR, some systems may be required to conduct an individual filter self assessment. Specifically, a system must conduct an individual filter self-assessment for any individual filter that has a measured turbidity level greater than 1.0 NTU in 2 consecutive measurements taken 15 minutes apart in each of 3 consecutive months. The system must report the filter number, the turbidity measurement, and the dates on which the exceedances occurred.

Filters represent the key unit process for the removal of particles in surface water treatment. Although filters represent only one of the “barriers” in a treatment process their role is the most critical as the final physical “barrier” to prevent passage of chlorine resistant pathogenic microorganisms into distribution systems. Properly designed filters used in conjunction with coagulation, flocculation and sedimentation processes (if in use), when in proper physical and operational condition, are capable of treating raw water sources.

For any situation regarding a single poor performing filter, or a bank of poor performing filters:
- Performance limitations observed at the start of a filter run are most often attributed to improper chemical conditioning of the filter;
- Limitations observed during the filter run are most often attributed to changes in hydraulic loading conditions; and,
- Limitations observed at the end of the filter run are most often related to excessive filter runs.

Filter performance issues may only be apparent during excessive hydraulic loading and care should be taken to not attribute all turbidity spikes to hydraulic bumping or overloading. In some circumstances performance “symptoms” for other causes may only be evident during these hydraulic episodes. Oftentimes disrupted filter media may cause filter performance problems. The following section describes the components of an individual filter self assessment.

- **A general description of the filter** including size, configuration, placement of washwater troughs and surface wash type (if applicable) and filter media design(e.g., type, depth and placement) and if filter-to-waste is present and/or used and if any special conditions exist regarding placing a filter back into service (i.e., is the filter rested, polymer or coagulant added prior to placement into service, etc.).
- **The development of a filter run profile** of continuous turbidity measurements or total particle counts versus time for an entire filter run from start up to backwash, including assessment of filter performance while another filter is being washed. The run length during this assessment should be representative of typical plant filter runs. The profile should include explanations of the cause of performance spikes during the run.
- **An assessment of the hydraulic loading conditions of the filter** which includes: the determination of the peak instantaneous operating flow for the individual filter, an assessment of the filter hydraulic loading rate at this peak instantaneous operating flow, and an assessment whether plant flow is distributed evenly among all the filters.
- **An assessment of the actual condition and placement of the media** with a comparison to the original design specifications. The filter bed should be investigated for surface cracking, proper media depth, mudballs and segregation
of media in dual media filters. The media should be examined (using coring and/or gross excavation techniques as appropriate) at several locations to determine the depth of the different media layers in dual and multi-media filters.

- **A description of backwash practices** including length, duration, presence of and type of surface wash or air scour, and method for introducing wash water (i.e., via pump, head tank, distribution system pressure, etc.) and criteria for initiating the wash (i.e., degraded turbidity or particle counts, head loss, run time, etc.), the backwash rate, and bed expansion during the wash.

- **An assessment of the condition of the support media/underdrains** including a filter grid detailing placement of support media, as well as a summary of inspection of the clearwell for the presence of filter media and any observances of boils or vortexing during backwash.

- **An assessment of the filter rate-of-flow controllers and filter valving infrastructure adequacy.** The rate-of-flow controllers and ancillary valving related to the filter can also have an impact on filter performance and should be visually inspected to assure proper operation.
TURBIDITY MONITORING

Turbidity, or the relative clarity of a liquid, is caused by the presence of microscopic particles such as clay, silt, or other fine undissolved matter. When water is treated for human consumption, its clarity becomes a critical matter. Microscopic particles, even at a very low concentration, can promote microorganism growth, which can inhibit the chlorination process that helps disinfect and purify our water. The measurement of turbidity has become the leading indicator of drinking water quality and can provide key benefits to a drinking water treatment plants operation by:

- Determining incoming or raw water quality to the treatment facility;
- Guiding plant operators in a treatment plan via water quality checks throughout the plant;
- Helping improve plant efficiency and optimizing proper chemical coagulant dosage;
- Providing the assurance of the production of quality safe water for public distribution; and,
- Indicating compliance with current drinking water regulatory standards.

The initial treatment stages in a drinking water plant deal with incoming raw water. Raw water turbidity monitoring, usually in the range of 0-200 NTU, provides a good indication of the solids loading entering the plant. Raw water is typically processed in 3 initial treatment stages:

- **Plant Intake**: Raw water is pumped into the plant from the source. Incoming water is often passed through a screen to remove large debris and, in most cases, pretreatment with chlorine, potassium permanganate or ozone is necessary here to destroy microbiological contaminants and oxidize materials which may cause taste and odor problems.

- **Flash Mixers**: Chemical coagulants like alum, polymers, or ferric chloride are added here to help form floc or aggregate of suspended particles. Carbon may also be added in this stage to control taste and odor.

- **Floculation Basin**: Treated water is then mixed, ideally for at least 30 minutes, to create enough disturbance to aid the floculation process. Other chemicals may be added to adjust the pH of the water, making conditions optimum for the formation of floc.

After treatment of the raw water, treated water enters 2 intermediate processing stages:

- **Settling Basin**: The water flows into the settling basin where approximately 90% of the suspended particles, now captured by the floc, settles to the bottom of the basin where it is removed as sludge.

- **Filter Beds**: As suspended solids still remain, the water is next filtered through filter beds. Filter beds usually consist of different grades of stone, sand, and sometimes, activated charcoal. In this stage gravity guides water through the filter bed and any remaining suspended particles are trapped. Low range turbidity monitoring, in the critical 0-1.0 NTU range, is required at this filtration stage - on each individual filter. Periodically, filter beds are cleaned by a backwashing process that reverses the flow of water through the filter bed. This process removes particles that were trapped during gravity filtration and sends this filter bed wastewater off for treatment.
After filtration, the water is treated with some form of chlorine disinfection and sent to a clear well or final processing stage:

- **Clear Well:** Two things take place here. First, the disinfection process is allowed additional contact time to ensure adequate protection from microbial growth as the drinking water moves into distribution. Second, it allows for storage of excess water to ensure the plant has an adequate supply of water available during times of large demand. It is also a combined filter collection point where turbidity is monitored for regulatory reporting purpose, in the critical 0-0.3 NTU range. From here the drinking water is piped to the public through the water distribution system.
Is your water treatment plant optimized? West Virginia is one of states in the nation who are involved in an Area Wide Optimization Program (AWOP). The purpose of this program is to achieve, among systems in a selected pilot area, optimized surface water treatment facilities in order to reduce the threat of microbiological contamination of drinking water provided to the consumer. It has been demonstrated that reducing the filtered water turbidity from 0.3 NTU to 0.1 NTU, or less, provides an additional approximate 1 log reduction in particles, or a reduction of 10 particles per 100 particles. This becomes extremely important when you consider that some of these particles could be Cryptosporidium oocysts. This indicates one can substantially reduce the risk of drinking water containing Cryptosporidia by making only a slight improvement in filtered water turbidity, possible without major physical improvements/additions!

Optimization, which is a continuing process, can be considered achieved when the following goals are being met at a water treatment facility.

Sedimentation
- Settled water turbidity is less than 1.0 NTU 95 percent of the time when daily average raw water turbidity is less than or equal to 10.0 NTU during the same period
- Settled water turbidity is less than 2.0 NTU 95 percent of the time when daily average raw water turbidity is greater than 10.0 NTU during the same period

Filtration
- Filtered water turbidity is less than 0.1 NTU 95 percent of the time based on the maximum values recorded during 2-hour time increments
- Maximum turbidity of any filtered water measurement is never greater than 0.2 NTU.

Monitoring Requirements
- Daily raw water turbidity is determined at 2 hour increments
- Settled water turbidity is determined at 2 hour increments from each sedimentation basin
- Filtered water turbidity is determined at 2 hour increments from each filter
- One filter backwash turbidity profile is performed each month for each filter

Recommended Instrumentation:
- Each filter effluent is equipped such that turbidity is continuously monitored and recorded
- The pH of raw and filtered water is continuously monitored and recorded
- Plant is equipped with an adequately sized PC for recording and electronically transmitting raw, settled and filtered water data, and for generating turbidity vs. time graphs
DISINFECTION

Disinfection is used to kill disease-causing (pathogenic) microorganisms in the water system; therefore, it should not be confused with sterilization, which is the destruction of all living microorganisms.

The operator also needs to be aware that changes in the pH may affect the ability of the chlorine to disinfect the water. The operator needs to understand:

1. **Injection point** – whether the injection point and the method of mixing is designed so that the disinfectant can get into contact with all of the water to be disinfected.
2. **Contact time** – expressed as CT value, the residual disinfectant “C”oncentration in mg/L multiplied by the corresponding disinfectant contact “T”ime in minutes. The “C” concentration of the chemical and the “T” length of contact time needed to adequately kill or inactivate pathogens vary with different types of disinfectant.
3. **Effectiveness of upstream treatment processes** – the lower the turbidity (cloudiness) of the water, the more effective the disinfection.
4. **Temperature** – at higher temperatures, the rate of disinfection is more rapid.
5. **Dosage and type of chemical** – usually the higher the dose, the quicker the disinfection rate. The form of disinfectant (chloramines vs. free chlorine) and the type of chemical (gas vs. liquid) used influence the disinfection rate.
6. **pH** – the lower the pH, the better the disinfection action.

When chlorine is initially added to water, the following may occur:

1. If the water contains iron, manganese, organic matter, or ammonia, the chlorine reacts with these materials and no residual is formed, meaning that no disinfection has taken place.
2. If additional chlorine is added at this point, it will react with the ammonia to form chloramines. The chloramines are considered a “combined” chlorine residual. As the chlorine is combined with other substances, it loses some of its disinfection strength. Combined residuals have less disinfection power than free (non-combined) residuals and may be the cause of taste and odor problems.
3. Some systems intentionally add ammonia to extend the life of the chlorine so residuals are carried to end-points in large distribution systems. The resulting combined chlorine is not as strong as free, but lasts longer.
4. With a little more chlorine added, the chloramines and some of the chlororganics are destroyed.
5. With still more chlorine added, free chlorine residual is formed, free in the sense that it can react quickly. Free also dissipates more quickly than combined.

Most chlorine analyses are performed with the DPD method. DPD reagent will change color in the presence of chlorine when added to a water sample. A manual color comparator (color wheel held up to the light) or a colorimeter (digital readout) that automatically measures the intensity of the color is used to determine the concentration of chlorine residual in the water sample.

Disinfection Requirements
West Virginia requires some form of chlorine to be used during disinfection, in order, to maintain the required 0.2 mg/L of chlorine residual in the distribution system.

West Virginia requires a minimum of 30 minute contact time (groundwater) and a free chlorine residual minimum after the contact time, based on pH. West Virginia requires a minimum of 0.4 – 1.0 mg/L free chlorine residual, depending on the pH for groundwater sources.

Breakpoint Chlorination
When chlorine is added to water that contains no ammonia, the residual that is obtained will be free available chlorine. If ammonia is present, and the demand has been satisfied, some of the free chlorine will react with the ammonia to form chloramines or combined chlorine residual. As more chlorine is added, it will breakdown the chloramines that have been formed and the combined residual will begin to drop. A point will be reached where the residual will begin to rise again after all of the chloramines, that can be, are destroyed. There may be some combined residual left in the water at this point. From this point, any additional chlorine dosage will result in the formation of only free chlorine residual. This is known as the “breakpoint”. All water systems that chlorinate their water will, in fact, practice breakpoint chlorination. They will add enough chlorine to the water to achieve a free chlorine residual of at least 0.2-0.5 mg/L.

Chlorine Treatment Terms
Several terms are used to identify the various stages and reactions that occur when chlorine is used as a disinfectant. The basic unit of measurement for chlorination, or any other chemical treatment is mg/L or ppm. These are very small units reflecting concentrations that are essentially one part chemical for every million parts of water. To get some idea of how small a concentration this really is it should be pointed out that 1% is equal to 10,000 mg/L or ppm.

Chlorine Dosage
The chlorine dosage is the amount of chlorine that is added to the water. The dosage can be determined from the number of pounds of chlorine used and the number of millions of pounds of water treated.

Chlorine Demand
Chlorine is a very reactive oxidizing agent. It will react with a certain substances that may be found in water. This list includes; iron, manganese, hydrogen sulfide, ammonia and other inorganic or organic materials in the water. When chlorine reacts with these substances, it loses its disinfecting properties. This is referred to as the chlorine demand. For chlorine to be effective as a disinfectant, the dosage must always exceed the demand that is present in the water. The chlorine demand may vary from day to day in a surface water supply. It is usually fairly constant in a groundwater supply.

Chlorine Residual
The chlorine that remains in the water, after it has finished reacting with those substances that represent the demand, is known as the chlorine residual. There are two types of residuals that result from the chlorination of water. They are free chlorine residual and combined chlorine residual.

Free Chlorine Residual
Chlorine in this form has the highest disinfection ability. After the demand has been satisfied, any chlorine that is left will react with water to form hydrochloric acid and hypochlorous acid.
Combined Chlorine Residual
Chlorine reacts with water to form hypochlorous acid. If ammonia is present, the hypochlorous acid will react with it to form compounds known as chloramines. Chloramines are weak disinfectants. They require longer contact times and higher concentrations to achieve disinfection than free chlorine residual. However, they do not breakdown as quickly as free chlorine and remain in the system longer.

Total Available Chlorine
The total available chlorine is the sum of free available chlorine and combined available chlorine.

Testing for Chlorine Residuals
Chlorine residual determinations and reporting are an important responsibility of the operator. Chlorine residual is most commonly measured using a DPD (Diethyl-p-Phenylenediamine) colorimeter test kit. This kit indicates the chlorine residual level by comparing the color produced with the DPD chemical addition to the water with a standardized color residual indicator. Not all test kits use a “color wheel”. Some kits consist of colorimeters or spectrophotometers for measuring the color intensity.

Forms of Chlorine
Chlorine is applied in one of three forms; chlorine gas, chlorine powder, or an aqueous solution like chlorine bleach.

Chlorine Gas
Chlorine gas is a greenish-yellow material with a penetrating and distinctive odor. It is more than two and a half times as heavy as air so will settle in low areas if it is released into the atmosphere. It is a poisonous gas and must be handled with care. Chlorine gas is not corrosive unless it is in a moist atmosphere or in contact with any moisture. It then becomes highly corrosive and is especially destructive to electrical equipment.

Chlorine gas (Cl₂) is compressed into a liquid for storage. It can be purchased in steel cylinders containing 100, 150 or 2000 pounds of the liquefied gas.

Chlorine Powder
Chlorine in its dry form is calcium hypochlorite, Ca(OCl)₂, is a white solid which is available in powder, granular or tablet form. Only about 65 – 70% of Ca(OCl)₂ is available as chlorine. The rest is calcium, which is not a disinfectant. It is normally dissolved in water and then injected into the drinking water using a solution feeder.

It is also most commonly known by the trade name HTH (High Test Hypochlorite), Perchloron or Pitclor.

Calcium hypochlorite is a powerful oxidizing agent and must be handled with care, kept dry and away from combustible materials. It may start a fire if the white solid material comes into contact with organic materials, such as an oily rag.

Chlorine Bleach
Chlorine bleach is an aqueous solution of sodium hypochlorite, NaOCl, containing 5 to 15% available chlorine. The 5.25% solution is sold in grocery stores under trade names such as Clorox, Purex, etc. This form can be used for emergency disinfection and then flushed away, but is not usually used for continuous chlorination. Sodium hypochlorite can be conveniently added to water using a small solution feed pump.

Disinfection Treatment Technologies Listed in the SWTR

Ozone
Ozone is the strongest oxidizing available for water treatment. Ozone is a powerful oxidant able to achieve disinfection with less contact time and concentration than all weaker disinfectants, such as chlorine, chlorine dioxide, and monochloramine. However, ozone can only be used as a primary disinfectant since it cannot maintain a residual in the distribution system. Thus, ozone disinfection should be coupled with a secondary disinfectant, such as chlorine, chloramine, or chlorine dioxide for a complete disinfection system.

Ozone can also be used to oxidize the following types of compounds: taste and odor compounds, certain organics, iron and manganese, and sulfides.

Chlorine
Chlorination in its several forms is the most widely used disinfectant at public water supplies. Hypochlorites are available in solid (e.g., tablet) or liquid (solution pump-fed) forms. The use of gaseous chlorination (while available) at small water supplies may not be among the best disinfection options due to the hazardous nature of the material. Use of gaseous chlorine places greater demand on the need for isolated plant space, on providing trained and attentive operating staff and their protection from any hazards, and, possibly, on liability issues which may boost insurance costs for small public water systems.

Chloramines
Chloramines, while possessing certain advantages over other disinfectants (e.g., long residual effect and low production of disinfection byproducts), have not been widely used in disinfection at small public water systems. Chloramine disinfection requires careful monitoring of the ratio of added chlorine to ammonia. Failure to do so can result in odor and taste problems or biological instability of water in the distribution system. Compared to free chlorine and ozone, chloramines possess less potency as a germicidal agent, and would therefore require longer CTs.

Chlorine Dioxide
Chlorine dioxide, although a powerful oxidant, may be more difficult to handle than other forms of chlorine. Chlorine dioxide requires trained staff to manage its use and is so reactive (and thus, is consumed very readily) that it may not provide a residual disinfectant in the distribution system.

UV Radiation
Ultraviolet (UV) radiation has been found to be an effective disinfectant in relatively clean source waters. Historically, UV has been adapted to disinfect reclaimed water, treated sewage, industrial process water, and small groundwater supplies. Simplicity of installation, ease of operation and maintenance, and low costs relative to chemical disinfection, make UV a useful small systems disinfection technology option.
Mixed-oxidants

Mixed-oxidant disinfection, which involves the on-site electrolytic generation of mixed disinfectants, is an emerging approach to disinfection. The process can also be referred to as “anodic disinfection”. The process involves the generation of ozone, chlorine dioxide, hypochlorite ion, hypochlorous acid, and elemental chlorine from the passage of an electric current through a continuous-flow brine (salt) solution. The solution containing these oxidants is then injected into the raw water for treatment.

Compared to the use of a single oxidant, the use of multiple oxidants can be more effective. This is due to several factors: (1) different oxidants have different ranges of conditions where they are most effective; (2) different oxidants have different residual durability; and (3) combinations of oxidants can act synergistically as disinfectants. Thus, mixed-oxidants are more effective against a broader spectrum of microorganisms when used properly. The increased effectiveness and reaction rate of mixed-oxidants as compared to chlorination is due to the combined action of ozone, chlorine dioxide, and chlorine. Both ozone and chlorine dioxide are considered stronger oxidants than chlorine. Another advantage of mixed-oxidant disinfection is that research indicates that mixed-oxidant disinfection may produce fewer disinfection by-products, such as trihalomethanes (THMs), than other chlorination
CHLORINE POINTS OF APPLICATION

When chlorination of water was first employed for disinfection, terminal treatment of the plant effluent was almost invariably practiced. Now the use of chlorine in various stages of water treatment, and even in the distribution system, is common practice. Multiple or split chlorination schemes are increasingly employed for disinfection and other purposes and frequently enhance the efficiency of many-unit water-treatment processes. Fundamentally, the points at which chlorine is applied depend on the specific objectives of chlorination-technical, practical, safety, economic, and other considerations. In practice, various terms have come into common usage to specify the point and location at which chlorine is applied.

Plain or Simple Chlorination
Simple chlorination involves the application of chlorine to water that receives no other treatment. More than half of all existing water treatment plants in the US fall in this category; thus, this treatment represents their sole public health safeguard. When applied to impounded or naturally elevated surface systems, chlorine usually is injected to the pipeline leading from such a gravity supply. When applied to water pumped into a system, chlorine usually is added at the pump suction, using pressure beyond the pump to operate the chlorine feeders.

Prechlorination
Prechlorination involves the application of chlorine to water prior to any other unit treatment process. Among benefits that can be achieved are improved filter operation by reduction and equalization of the bacterial and algal load and by control of slime and mud ball formation; improved coagulation; reduction of taste-, odor-, and color-producing materials by oxidation and retardation of decomposition (in settling units); and the provision of a safety factor in disinfecting heavily contaminated waters while keeping the chlorine residual in the distribution system at a minimum. When prechlorination is employed it usually is desirable to obtain a contact period that is as long as possible, preferably by applying chlorine to the raw water suction intake to provide contact during the entire purification process. The dosage, of course, depends on the objective. In some cases, free chlorine residuals may suffice. Care must be exercised to maintain the proper residual necessary to accomplish the desired objective.

Postchlorination
Postchlorination involves the application of chlorine to water following any other unit treatment process. The most important form of postchlorination is that following filtration for disinfection, to provide either a free or combined residual chlorine in a part of or the entire distribution system. The contact period provided to effect disinfection is an important consideration; chlorine is usually added to the filter effluent. When postchlorination follow prechlorination and precedes filtration, greater filter residual in the delivered water to a predetermined amount and thus reestablishes the portion of chlorine that had been consumed in the purification process.

Rechlorination
Rechlorination involves the application of chlorine to water, following the previous chlorination treatment, at one or more points in the distribution system. The practice, which may involve free or combined residual chlorination, is especially common where the distribution system is long and complex and where the plant effluent residual is insufficient to control bacterial and algal regrets, red-water troubles, etc. The chlorine may be applied at the end of a long main in the distribution system, at a point where a main supplies water to an outlying community, or at such places as a reservoir, standpipe, or booster pumping station.
Dechlorination
When combined residual chlorination or free residual chlorination is employed, chlorine residuals of a certain type and intensity must be attained to accomplish a particular objective. In some instances the residual might be of such magnitude that the water will be aesthetically or otherwise objectionable, and a portion of the residual will have to be removed. Dechlorination is the partial or complete reduction of residual chlorine in water by any chemical or physical treatment.
FULL-TIME CHLORINATION

PWSs must demonstrate that continuous disinfection is being practiced. The PWS operator must monitor daily the amount of chlorine being added (free chlorine) and the total chlorine residual obtained in the distribution system.

Chlorine Gas
When gas chlorine is used for continuous disinfection it is typically fed by use of a vacuum operated, solution feed chlorinator. For safety reasons, the chlorine is handled under vacuum so any leaks will leak air into the chlorinator instead of allowing chlorine to leak into the air. The vacuum is produced in an ejector in which a small stream of water is pressured through a nozzle orifice. The vacuum produced opens a check valve and an internal valve in the chlorinator allowing chlorine to feed from the tank into the ejector where it is mixed with the water stream from the nozzle. The resulting chlorine solution is mixed with the main stream of water to be disinfected. A variable orifice flow meter (rotometer) mounted on the chlorine gas cylinder indicates the chlorine flow rate with a small black ball suspended in a glass tube. When using a gas chlorinator, the ejector water is usually controlled either by a solenoid valve or by starting and stopping a booster pump so the chlorination system operates while the well pump is pumping and shuts down when the well pump is off.

Calcium or Sodium Hypochlorite
Hypochlorination, using either calcium hypochlorite or sodium hypochlorite, is often the most practical method of disinfection for small water systems.

Calcium hypochlorite is usually the least expensive of the two and is often selected for that reason. Typically, the hypochlorite is dissolved into a water solution and metered into the flowing water stream using a small diaphragm or plunger-type pump.

Calcium hypochlorite tablets will not dissolve readily in water colder than 41°F, so the availability and temperature of the mixing water must be considered. In hard water, calcium hypochlorite may form a calcium carbonate precipitate, which will interfere with the solution feed pump unless the chlorine solution is prepared in a separate tank and allowed to settle. The clear liquid is then siphoned to a storage tank for use.

Sodium hypochlorite may also form some precipitate but may not need to be settled and siphoned. Sodium hypochlorite is often fed at full strength from the container, allowing for fewer problems in handling.

Hypochlorination requires close attention by the operator as the pump and injection point often build scale. The scale will prevent the pump poppet valves from sealing and the pump will not move the solution into the water to be disinfected. Maintenance of the pump, and especially cleaning the pump valves, should be on a regular weekly schedule, or as often as experience indicates.
CHLORINE MONITORING

Chlorine monitoring assures proper residual at all points in the system, helps pace re-chlorination when needed, and quickly and reliably signals any unexpected increase in disinfectant demand. Monitoring chlorine levels in the system also can serve as a "surrogate" for detecting potentially threatening contamination, because many chemical and biological contaminants are known to combine with chlorine. Therefore, a significant decline or loss of residual chlorine could be an indication of potential threats to the system.

Monitoring for free residual chlorine and total residual chlorine (free available plus combined available chlorine) is a state requirement. The following sections outline the procedures for monitoring the residual chlorine levels in municipal water.

Chlorine concentrations can be measured either in the field using simple field kits or in the laboratory using more sophisticated procedures and equipment. Most field kits work from a similar principal where an indicator is added to a water sample and the color of the solution is compared to a set of colored standards. The colors in the standards have been calibrated in a laboratory to match set concentrations of chlorine. For instance, if a water sample is placed in a glass vial containing an indicator, and the solution turns dark red, this indicates a higher concentration than if the solution turns faint pink.

The limitation to field kits is their detection limits. The detection limit is typically 0.1 ppm. However, even though it cannot be quantified, these kits can identify trace concentrations of chlorine if a faint color is present. Laboratory methods, on the other hand, have lower detection limits, but are generally not applicable because the chlorine dissipates more quickly and will be lost during transport (unless it is in the combined chlorine form).

DPD Indicator
One kit uses N, N-Diethyl-p-Phenylenediamine (DPD) as the indicator solution. This method determines chlorine content according to the DPD Method 409F described in the 21th edition of Standard Methods for Examination of Water and Wastewater.

The water is collected in a sample tube and the indicator is added to this tube. It uses tablets or powder pillows to dye water samples to a degree proportional to the chlorine content in the sample. When the water in the tube changes color, the color is compared to 9 or 10 colors present in similar smaller tubes located on a color disk. The color disk is rotated until the color closely matches that inside the test tube. The disk color relates to a concentration. The method can differentiate between combined chlorine and free available forms by using different types of indicator. Fresh indicator should always be used as old DPD can give false readings. This type of kit detects from 0.1 to 5.0 ppm chlorine.

Spectrophotometers
There are a number of field spectrophotometers that can be used for measurement of residual chlorine levels. One model is a pocket-sized instrument that tests for free and total residual chlorine over the operating range of 0 to 4.0 ppm. The meter reads in 0.01 ppm increments with an accuracy of 0.05 ppm. The reagent used in these types of instruments is typically DPD, as described above.

Laboratory Analysis
Laboratory analysis for total residual chlorine in water is not recommended due to the very short storage time that a sample can remain stable, and the relatively long turnaround time for results. Chlorine dissipates from a water sample very quickly as a result of exposure to light, increased temperature, and agitation. According to the EPA standard laboratory techniques for residual chlorine analysis Method 4500-Cl, samples to be analyzed for residual chlorine should not be stored at all, but analyzed immediately. The EPA Standard Method 4500-Cl outlines different methods to detect residual chlorine, including:
 • Iodometric Method;
 • Amperometric Titration Method;
 • Low-Level Amperometric Titration Method
 • DPD Colorimetric Method;
 • Syringaldazine (FACTS) Method; and
 • Iodometric Electrode Technique.

The advantage of these methods is that the detection limits are as low as 0.010 mg/L (ppm or 10 μg/L (ppb), depending on the sophistication of the equipment.

It is recommended that sampling for free and total residual chlorine be completed in the field using a field testing kit to obtain the best results.

Interferences

The field methods used to measure total residual chlorine can give false readings in some circumstances. For example, the DPD indicator method is subject to interference by oxidized forms of manganese. The test may indicate chlorine is present when it is the interfering compound reacting with the indicator to give a false reading. High sample color and turbidity may also cause interference and give inaccurate readings.

When an interference is suspected, chlorine free samples should be measured to establish background readings. This can be done by taking a water sample and agitating the water for a few minutes to decrease chlorine levels in the sample, and then taking a chlorine reading on that sample. If the reading does not decrease repeat the agitation procedure a few more times. If a positive result is still obtained, it is likely that an interference is present, which must be taken into account during the monitoring program. For example, in the case of the pocket photometer the background reading can be subtracted from the reading obtained with the true sample for low turbidity samples, but not for samples that have a false positive interference.

Another interference may occur when the chlorine residual is a high enough concentration that the reagent (DPD) will bleach out and no color will develop. This will result in a false negative reading.

On-line Monitoring

All surface water treatment plants designed to serve 3,300 people or more shall be equipped with recording chlorine analyzers and continuous recorders monitoring water entering the distribution system. The chlorine residual on-line monitoring requires a continuous flow of water through the flow cell. Every 2.5 minutes a sample is retained in the flow cell to measure blank absorbance (color intensity) before reagents are added. This compensates for turbidity in the sample and provides an automatic zero reference point. Reagents are then added to the flow cell and a magnetic stirring motor mixes the sample. After color development, the color intensity is measured and compared to the reference. The difference between the two readings is used to
calculate the chlorine concentration. Analyzing range is 0-5 mg/L. These units also require about three feet of wall space, 120 VAC, water supply and drain. The analyzer will need to be assembled according to manufacturer’s instructions. Once the unit is assembled and installed the buffer and reagent will need to be installed following instructions in the manual. The system will prime itself and be ready for service. High and low chlorine alarms may be set as well. These alarms can be used to take pumps off line, if there is a problem with the chlorination equipment. A 4-20 mA is available for SCADA or chart recorder outputs. Over time, the analyzer can start to drift on the chlorine readings. The analyzer should be checked at least weekly with a grab sample. Depending on water conditions, the flow cell will need to be cleaned weekly. The buffer and reagent must be replaced once a month. The tubing will need to be changed annually.
This stands for the **contact time (CT)** between disinfectant and microorganism and the concentration of disinfectant. CT is used to calculate how much disinfectant is required to adequately disinfect water. C refers to the final residual concentration of a particular chemical disinfectant in mg/L. T refers to the minimum contact time (minutes) of material that is disinfected with the disinfectant. Therefore, the units of CT are expressed in mg-min/L. For this discussion, chlorine will be used in place of disinfectant.

\[
CT = \text{disinfectant concentration} \times \text{contact time} = C \text{ mg/L} \times T \text{ minutes}
\]

When chlorine is added to water, it does not only react with pathogenic microorganisms, but also with other impurities, such as soluble metals, particles of organic matter and other microorganisms. The chlorine demand is created when the chlorine reacts with these substances. The chlorine demand must first be satisfied, before a chlorine residual concentration can be established. The chlorine concentration (or chlorine dose) that has to be added to water is made up by the sum of the chlorine demand and the chlorine residual. Once there is a chlorine residual, this chlorine residual has to be maintained during the required contact time to kill pathogenic microorganisms. To adequately disinfect the water it is therefore required to supply the water with a higher chlorine dose than the concentration required to kill pathogenic microorganisms. The time required to deactivate a particular microorganism decreases when the applied chlorine dose is increased.

The CT concept was developed specifically for surface water, with the assumption that PWSs would be trying to inactivate both *Giardia* and viruses. Since the CT required to provide 3-log inactivation of *Giardia* is at least enough to provide the required 4-log inactivation of viruses, the EPA just set the standard for *Giardia* and ignored viruses.

The CT is commonly used to determine the effectiveness of a particular disinfectant against a certain microorganism under specified conditions. There is a difference between the relative affectivity of chemical disinfectants against different microorganisms. Often a certain level is added to the CT, for example 99%. This means that 99% of the microorganisms are deactivated by the disinfectant. CT can be used to compare the affectivity of various disinfectants against microorganisms (Table 1). According to Table 1, ozone is the most effective disinfectant; the CT value of ozone is very low. Chloramines are least effective and cannot be used against *Giardia*. Chlorine is effective against *E. coli* bacteria. The CT value of chlorine used against *Giardia* is a lot higher than that of chlorine used against *E. coli* bacteria.

Table 1: Comparison of CT values for the 99% inactivation of microorganisms at 5 °C

<table>
<thead>
<tr>
<th>Organism</th>
<th>Free chlorine (pH 6-7)</th>
<th>Chloramines (pH 8-9)</th>
<th>Chlorine dioxide (pH 6-7)</th>
<th>Ozone (pH 6-7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli bacteria</td>
<td>0.034 – 0.05</td>
<td>95 – 180</td>
<td>0.4 – 0.75</td>
<td>0.02</td>
</tr>
<tr>
<td>Polio virus</td>
<td>1.1 – 2.5</td>
<td>770 - 3740</td>
<td>0.2 – 6.7</td>
<td>0.1 – 0.2</td>
</tr>
<tr>
<td>Giardia cysts</td>
<td>47 - 150</td>
<td>-</td>
<td>-</td>
<td>0.5 – 0.6</td>
</tr>
</tbody>
</table>
The type of microorganism
Disinfectants can effectively kill pathogenic microorganisms (bacteria, viruses and parasites). Some microorganisms can be resistant. *E. coli* bacteria, for example, are more resistant to disinfectants than other bacteria and are therefore used as indicator organisms. Several viruses are even more resistant than *E. coli*. The absence of *E. coli* bacteria does not mean that the water is safe. Protozoan parasites like *Cryptosporidium* and *Giardia* are very resistant to chlorine.

The age of the microorganism
The effectiveness of a particular disinfectant also depends upon the age of the microorganism. Young bacteria are easier to kill than older bacteria. When bacteria grow older, they develop a polysaccharide shell over their cell wall, which makes them more resistant to disinfectants. When 2.0 mg/L chlorine is used, the required contact time to deactivate bacteria that are 10 days old is 30 minutes. For bacteria of the same species and of the age of 1 day 1 minute, contact time is sufficient. Bacterial spores can be very resistant. Most disinfectants are not effective against bacterial spores.

Water that requires treatment
The nature of the water that requires treatment has its influence on the disinfection. Materials in the water, for example iron, manganese, hydrogen sulfide and nitrates often react with a disinfectant, which interferes with the disinfection process. Turbidity of the water also reduces the effectiveness of disinfection. Microorganisms are protected against disinfection by turbidity.

Temperature
The temperature also influences the effectiveness of disinfection. Increasing temperatures usually increases the speed of reactions and of disinfection. Increasing temperatures can also decrease disinfection, because the disinfectant falls apart or is volatized.
LOG INACTIVATION METHODS

The disinfection profile is based on microbial inactivation. As part of the SWTR, EPA developed a method to calculate microbial inactivation for evaluating the effectiveness of disinfection in a water system. Chemical disinfection does not remove microorganisms from water but inactivates them so they can no longer infect consumers. Under the method developed for the SWTR, the actual plant disinfection conditions are converted to a theoretical level of inactivation of specific microorganisms.

The conversion from plant conditions to microbial inactivation is accomplished based on “CT tables” developed for the SWTR, where C is the residual disinfectant concentration (mg/L) and T is the time (in minutes) that water is in contact with the disinfectant. These tables relate CT values to levels of inactivation under various operating conditions. Different tables exist for different disinfectants. As the CT value is increased, a greater percentage of microorganisms are inactivated by chemical disinfection. The CT, and therefore the level of inactivation, can be increased by applying greater doses of the disinfectant or by increasing the time that the water is in contact with the disinfectant.

The level of inactivation is generally referred to in terms of “log inactivation” since inactivation is measured on a logarithmic scale (i.e., orders of magnitude reduction). For example, a 2-log inactivation and/or removal of Giardia corresponds to inactivating 99 percent of the Giardia cysts through the disinfection process while a 3-log inactivation and/or removal corresponds to a 99.9 percent inactivation.

Log inactivation is a measure of the percent of microorganisms that are inactivated during the disinfection process and is defined as:

\[\text{Log Inactivation} = \log \left(\frac{N_0}{N_T} \right) \]

Where, \(N_0 \) = initial (influent) concentration of viable microorganisms
\(N_T \) = concentration of surviving microorganisms
\(\log \) = logarithm to base 10

Log inactivation is related to the percent inactivation, defined as:

\[\text{Percent Inactivation} = (1 - \frac{N_0}{N_T}) \times 100 \]

Therefore, the relationship between log inactivation and percent inactivation is as follows:

\[\text{Percent Inactivation} = (1 - 1/10^{\text{Log Inactivation}}) \times 100 \]

or

\[\text{Log Inactivation} = \log \left(\frac{100}{100-\text{Percent Activation}} \right) \]

The following two examples illustrate the relationship between influent and effluent concentrations, percent inactivation, and log inactivation.

Example 1
A utility has an influent concentration (N_0) of active *Giardia* of 10,000 cysts/100 L and a concentration of surviving microorganisms at the first point in the distribution system (N_T) of 10 cysts/100 L. What is the log inactivation of this treatment process?

Log Inactivation = $\log \left(\frac{N_0}{N_T} \right)$
\[
= \log \left(\frac{10,000}{100} \right)
= \log 1000
= 3
\]

Example 2

Given that the utility has a 3-Log Inactivation of *Giardia*, what is the percent inactivation of *Giardia*?

Percent Inactivation = \(1 - \frac{1}{10^{\log \text{inactivation}}}\) x 100
\[
= (1 - \frac{1}{10^3}) \times 100
= (1 - 0.001) \times 100
= 99.9
\]

As the two examples show, a 3-log inactivation equals 99.9 percent inactivation. Table B-1 presents similar calculations for different log inactivations and corresponding percent inactivations.

Table B-1: Log Inactivation and Percent Inactivation

<table>
<thead>
<tr>
<th>Log Inactivation</th>
<th>Percent Inactivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.00</td>
</tr>
<tr>
<td>0.5</td>
<td>68.38</td>
</tr>
<tr>
<td>1.0</td>
<td>90.00</td>
</tr>
<tr>
<td>2.0</td>
<td>99.00</td>
</tr>
<tr>
<td>3.0</td>
<td>99.90</td>
</tr>
<tr>
<td>4.0</td>
<td>99.99</td>
</tr>
<tr>
<td>5.0</td>
<td>99.999</td>
</tr>
<tr>
<td>6.0</td>
<td>99.9999</td>
</tr>
<tr>
<td>7.0</td>
<td>99.99999</td>
</tr>
</tbody>
</table>
DISINFECTION BYPRODUCTS

There is no question that the use of chlorine as the primary disinfectant used for water treatment in the U.S. has had an enormous impact on the prevention of waterborne diseases. However, when free chlorine is added to surface waters containing natural organic material (NOM) chemical reactions will occur, which produce Disinfection Byproducts (DBP). If consumed over long periods of time, some DBPs may cause undesirable health effects, including cancer. Consequently, regulatory standards have been established to limit the amount of various DBPs that are acceptable in a PWS.

Formation of Disinfection Byproduct
Natural organic matter is the precursors of disinfection byproduct formation. Natural organic matter in surface waters are generally naturally occurring organic substances, such as humic and fulvic acids. These acids belong to a family of compounds having similar structure and chemical properties and are formed during the decomposition of vegetation. Humic acids are hydrophobic or water repellent and a portion of these can be removed by coagulation and sedimentation. The fulvic portion is not amenable to conventional treatment. It is always more effective to remove precursors prior to disinfection.

Raw waters containing high levels of organic matter, such as lakes and ponds, are at a higher risk of forming DBPs than waters containing low levels of organic matter, such as most groundwater sources. Consequently, small systems utilizing chlorinated surface water sources are more likely to have DBP problems than those using chlorinated groundwater sources. Therefore, DBPs that result from chlorine disinfection have been studied more extensively than DBPs that might result from the use of alternative disinfectants such as ozone.

Testing for Precursors
NOM can be estimated by determining the total and dissolved organic carbon. Since 90% of the organic carbon in a water supply is typically dissolved, the total organic carbon (TOC) gives a good approximation of the DBP precursors present.

UV light absorbency at 254-nanometer wavelength can also be used to estimate organic compounds present. This test is particularly effective at assessing the presence of humic substances because these substances absorb light in the UV spectrum. Results are influenced by pH and turbidity and standardization of pH and samples be filtered with a 0.45 um membrane is recommended prior to UV-254 analysis.

The Specific Ultraviolet Absorbance (SUVA) test is a further refinement using all these techniques and is the ratio of UV-254 divided by DOC. This value gives a more precise identification of the amount of humic material present. SUVA values of 3 indicate water with nonhuminic materials and values above 4 to 5 indicate waters with primarily humic materials present.

Predicting Formation of Disinfection Byproducts
Disinfection Byproducts (DBP) are produced by the reaction of free chlorine with organic material found in natural waters. The Total Trihalomethane Formation Potential (TTHFP) of the source water can be measured in a sample incubated for 7 days, using a free chlorine residual of 3 to 5 mg/L, a temperature of 25 °C and pH of 7. Since this test is under severe conditions, the
Uniform Trihalomethane Formation Potential is sometimes used. In this test the incubation period is shortened to 24 hours, the free chlorine residual is at 1 mg/L to 0.40 mg/L and a pH of 8. These conditions are more representative of actual distribution system conditions and correlate better to DBP formation.

Trihalomethanes and Haloacetic Acids

Disinfection byproducts are groups of chemical compounds that are **trihalomethanes (THMs)** and **Haloacetic Acids (HAA5s)** produced by chlorine in the disinfection process when organic compounds are present.

Disinfection byproducts are produced by the reaction of free chlorine with organics in the source water. In this process the chlorine replaces hydrogen atoms with chlorine. THMs are a particular group of compounds where 3 of the 4 hydrogen atoms in a methane compound have been replaced by chlorine or bromine atoms. The bromine replacement in the methane compound is a particular reaction caused by free chlorine. Bromide compounds are typically present in surface water and chlorine oxidizes bromide ions resulting in the formation of free bromide that reacts with the organic material to produce bromoform, bromodichloromethane, dibromochloromethane, monobromoacetic acid and dibromoacetic acid. Three of these compounds are THMs and two of them are Haloacetic Acids. The S1DBPR regulates four specific Trihalomethane compounds and five specific Haloacetic acids or HAA5s. The additive concentrations in mg/L of these compounds are called **Total Trihalomethanes (TTHMs)** and HAA5s. The MCLs for TTHMs and HAA5s are 0.080 mg/L and 0.060 mg/L, respectively.

Treatment Methods to Remove Disinfection Byproducts

DBP are difficult to remove once they are formed. Absorption with activated carbon and ion exchange can be effective but are generally very costly. Coagulation, sedimentation, filtration and softening are very limited in removing DBPs. Aeration can remove THMs since they are volatile.

Source water control strategies involve managing the source water to lower the concentration of naturally occurring precursor or TOC removal is always more effective than DBP treatment. To ensure effective control of DBP precursors, the S1DBPR sets process performance standards for TOC removal for surface and GWUDI water treatment plants.

Factors Governing THM and HAA5 Formation

A number of factors can affect the formation of DBPs. These include the types and concentrations of organic materials present when disinfectant is added, the dosage of disinfectant, the temperature and pH of the water, and the reaction time.

To control the formation of DBPs during chlorination, there are three effective strategies:

1. Remove the byproducts after they are formed, which can be difficult and costly;
2. Use alternative disinfectants or disinfectant combinations that do not produce or reduce the undesirable byproducts; and,
3. Reduce the concentration of organics in the water before oxidation or chlorination to minimize the formation of byproducts. This is the most effective strategy and will provide the highest quality finished water.
CHLORINE SAFETY

Although it is used as a disinfectant, it is a dangerous and potentially fatal chemical if used improperly. Chlorine, in any form, can be a difficult and hazardous chemical to handle in the concentrations used in water treatment.

Chlorine gas can be especially hazardous to handle and all personnel should be thoroughly aware of its hazardous properties. All personnel handling chlorine should know the location and use of the various pieces of personal protective equipment and be instructed in safety procedures. In a moist atmosphere, or in contact with any moisture, chlorine is highly corrosive and is especially destructive to electrical equipment. When combined with the moisture in mucous membranes of the nose and throat, and with the fluids in the eyes and lungs, a very small amount of chlorine gas in the air can be very irritating and can cause severe coughing. Heavy exposure can be fatal.

Chlorine gas leaks may be detected by passing an ammonia-soaked cotton swab near the suspected area. If chlorine gas is leaking and comes in contact with ammonia, a white smoke appears. Do not spray ammonia on the leak, because too much white smoke will be formed to see the leak area and may fill the room so that even the exit is difficult to find. If a chlorine cylinder is leaking, it should only be handled by a person equipped with and trained to use a proper self-contained breathing apparatus (SCBA) in good operating condition.

Chlorine gas storage rooms and rooms where chlorine gas is used are required to have mechanical exhaust systems that draw air from the room at a point no higher than 12 inches above the floor. This low height is necessary so the exhaust fan will remove the settling chlorine gas from the room.

Empty tanks, tanks in use and back-up tanks must be restrained using a chain or other means so that they cannot be knocked over.

Sodium and calcium hypochlorite are not as hazardous as gaseous chlorine and therefore are easier and safer to handle. This certainly should be one of the major considerations for a small system when determining which form of chlorine to use. Personal protective equipment (mask, apron, gloves) should be used when handling hypochlorite since it can cause damage to eyes and skin upon contact. If spilled on skin, the affected area should be washed quickly with large amounts of water. Hypochlorite solutions are very corrosive. Large volumes of water should be used to wash-down spills. Hypochlorite compounds are non-flammable; however, they can cause fires when they come in contact with organics (oily rags) or other easily oxidizable substances.

General Chlorine Safety
Chlorine is a greenish-yellow gas. It is 2.5 times heavier than air. Chlorine gas is very corrosive. It turns into hydrochloric acid when it comes in contact with moisture (in the water, in the chlorine lines, or in your eyes or lungs). It does not support combustion but can be harmful if inhaled in small quantities and fatal in larger doses. Chlorine leaks can be located using ammonia vapors.

Chlorinator Room
The chlorinator room should have a window in the door so that the operator in the room can be seen from the outside. The light and vent switches should also be located outside the room. The room should have ventilation located at floor level since chlorine gas is heavier than air and will
settle in the lowest spot in the room. The room should be kept between 60 °F and 120 °F. Below 60 °F, chlorine gas forms chlorine hydrate, also known as “green ice,” when it comes in contact with water. This green ice can clog the injector and gas piping, creating a serious maintenance problem.

When a chlorine cylinder is full and at room temperature, it is about 85% full of liquefied chlorine. As the temperature rises, the liquid expands and takes up more space in the cylinder. At 157 °F the liquid will expand to occupy 100% of the cylinder. If the liquid expands any further the cylinder will rupture, causing a massive chlorine leak.

Chlorine Storage
The room where chlorine cylinders or HTH drums are stored must be kept dry and well ventilated. Chlorine should always be stored in a room separate from other chemicals. Chlorine cylinders that are empty should be separated from those that are full. All cylinders should be chained to the wall.

Chlorine Cylinders
NEVER remove the valve hood from a chlorine cylinder unless it is chained to the scales and ready to be put on the system. All cylinders should be chained to the wall or the scales unless they are being moved. Every system that operates a gas chlorine system should have an emergency kit or be able to get access to one on very short notice. To prevent the cylinder from rupturing when it gets too hot, every gas cylinder will have a “fusible plug” that is designed to melt at 157 °F. There is one in the valve assembly of every 150 lb. cylinder and six (three on each end) in the body of every 1-ton cylinder. As one of these fusible plugs melts, it will allow the release of chlorine gas from the cylinder. This still represents a serious problem, but the release will be more gradual than it would if the tank ruptured.

Respiratory Protection
Anyone involved in handling chlorine should have access to respiratory protection equipment. There are two basic types of respiratory protection. One is the gas mask that uses a filtering device to remove chlorine. These are either a full-face mask or a mouth/nose type respirator. A respirator with its own air source is called a supplied-air respirator or **Self Contained Breathing Apparatus (SCBA)**. It consists of either a self-contained unit that the worker wears or a hose connecting a worker to a remote air source. The SCBA provides continuous positive air pressure into a facemask. Both of these devices may be rendered ineffective if the wearer has facial hair that interferes with the face-to-mask seal.
CHLORINE SAFETY PRECAUTIONS

Chlorine Gas
Chlorine gas is a hazardous substance and should be handled with care. The following list gives some general safety precautions that should be taken when handling 100 or 150-lb chlorine cylinders:

- Chlorine cylinders should be moved on properly balanced hand trucks, preferably with rubber tires. A clamp or chain support two-thirds of the way up the cylinder should be used to secure the container.
- Chlorine cylinders should be transported and stored in an upright position.
- Chlorine cylinders must be secured so that they cannot be tipped over.
- Chlorine cylinders should not be dropped, allowed to strike forcefully against anything, or struck forcefully by other objects.
- Chlorine cylinders should be stored so that they can be moved in the event of a leak or fire.
- Chlorine cylinders should not be stored or used in an area below ground level, because chlorine gas is heavier than air and will settle into and remain in such areas.
- When receiving a shipment of chlorine cylinders, inspect the shipment before accepting it.
 - Check each cylinder for serious dents, cuts, or gouges that might decrease the wall thickness of the container.
 - Look for signs of corrosion or pitting that might be serious enough to weaken the cylinder.
 - Check for obvious bulges.
 - Put your hand on each cylinder to see if it is hot to the touch. This could indicate internal moisture contamination. If there appears to be internal moisture, return the cylinder to the manufacturer or supplier.
 - Visually inspect the valves and fuse plugs.
- If any of the chlorine cylinders appear of questionable status, return the cylinder to the manufacturer or supplier.
- Whenever there is any indication of a leak or other problem with the chlorine cylinders, take safety precautions immediately. Only authorized, trained personnel with suitable self-contained breathing apparatus should investigate; all other persons should be kept away from the affected area. When you suspect problems with a chlorine cylinder, the chlorine supplier should be contacted for emergency assistance.

Calcium Hypochlorite
While calcium hypochlorite is not as dangerous as chlorine gas, it should be handled according to the recommended procedures. The following is a short list of precautions that should be taken when working with this solid form of chlorine.

- Calcium hypochlorite should be stored only in the original container and away from moisture.
- Calcium hypochlorite is relatively stable but will decompose in storage. It can ignite or explode on contact with organic materials (oil, rags, or alcohol), and it should not be exposed to fire or elevated temperatures.
- When handling calcium hypochlorite, the operator should wear a protective apron, rubber gloves, eye protection, and a dust-protection respirator.
Sodium Hypochlorite

The following is a list of precautions to take when working with this liquid form of chlorine:

- Sodium hypochlorite should be stored in a cool, dark place to minimize decomposition.
- Always store sodium hypochlorite in a container made of a proper material, such as plastic, because the chemical is corrosive to many types of materials. The containers should be kept closed. Fumes escaping from the containers are corrosive.
- When working with this product, wear protective gloves, apron, and eye protection.
HOW TO HANDLE CHLORINE GAS SAFELY

Chlorine gas is greenish-yellow and smells like bleach. It is highly corrosive and irritating to the eyes, nose, throat, and mucous membranes. It reacts violently with petroleum products such as gasoline, diesel, oil, solvents and turpentine. Chlorine gas is about 2.5 times heavier than air and will settle in low-lying areas unless there is sufficient wind for dispersal. It can form phosgene (a toxic and corrosive gas) in the presence of carbon monoxide from a fire, and sulfuryl chloride (a toxic corrosive gas) in the presence of sulfur dioxide from auto exhaust.

Despite these hazards, chlorine does not have to be a serious risk to those who handle it if they are properly trained. Although not a substitute for formal training, this segment discusses chlorine handling and safety practices, particularly for small water treatment systems.

Emergency Help
Don’t wait until you need a phone number. Make a list of all relevant contact numbers and keep them posted at several locations in the plant and office. The list should include the fire department that will respond to your facility and the police department, and any other facilities in the area that may be of help. Posting these numbers is especially important if you don’t have 911-service in your area. Keep the numbers updated.

Inform local police and fire departments of the possible hazards associated with all the chemicals used in your plant, especially chlorine, so they can be prepared in the event of an emergency. Organize escape plans from areas where there might be chlorine emission. Taking short cuts may not only be dangerous, they could be deadly.

Protective Equipment
Systems using gas chlorine should have respiratory protection equipment that meets National Institute for Occupational Safety and Health requirements available where chlorine gas is handled. This equipment should be stored at a convenient location but not inside any room where chlorine is used or stored. The unit(s) should use compressed air, have at least a 30 minute capacity and be compatible with – or exactly the same – as the units used by the fire department that will respond to your water treatment plant. The unit(s) should also be tested and refreshed on a regular basis. Ask your fire department to inspect and test the unit(s).

The Buddy System
Having a second person at the plant when changing or handling chlorine is ideal. If one operator is incapacitated, the other can call for help. If you are working alone, let someone know when you are handling chlorine. Right before going into the chlorine room, call someone familiar with your work and location and then, when finished, call back so they know that you are all right.

Separate Chlorine Room
A separate room for chlorine, especially gas chlorine, is important. Check with WV State Design Standards (WV 64CSR77) and the Chlorine Institute for requirements on inside storage and use of chlorine. The chlorine room should be enclosed, sealed and separated from other operating areas. It should have a shatter-resistant inspection window mounted in an interior wall that is built to seal all openings between the chlorine room and the remainder of the plant. The room should have doors equipped with panic hardware that opens outward to the building exterior providing an easy escape.
Locate the chlorine room on the downwind side of the building—away from entrances, windows, louvers, walkways and so on. The room must be equipped with a ventilating fan that provides one complete air exchange per minute when the room is occupied. The fan should move air as far as practical from the door and air inlet, and discharge to the outside atmosphere. In addition, louvers should facilitate airtight closure for air intake near the ceiling and exhaust near the floor.

Locate separate switches for the fan and lights outside the chlorine room and at the inspection window. Protect outside switches from vandalism. Provide a signal light indicating fan operation at each entrance when the fan can be controlled from more than one point.

The floor of the room should be finished in a non-slip surface, and floor drains are discouraged. If a floor drain is used, it should discharge to the outside of the building and should not be connected to other internal or external drainage systems. The end of the drain should discharge to the outside atmosphere, above-grade, so it does not contaminate air inlets or entrance doors to any rooms or structures. The room should be at least 60 °F and protected from excessive heat.

Chlorine Leak Detection
The room should have continuous leak detection equipment with sound and visual warnings that can be heard and seen throughout the treatment plant. This unit should be calibrated and tested at regular intervals and documented. A bottle of ammonium hydroxide, 56% ammonia solution, should be available for chlorine leak detection. A leak repair kit approved by the Chlorine Institute should be provided (Kit A for 150 pound cylinders and Kit B 1 ton for containers).

Safety tips for 150 pound cylinders and one-ton containers
- Never lift a cylinder by its hood.
- Always keep the hood in place, except when the cylinder is being used.
- Never expose cylinder to heat or direct sunlight.
- Never drop a cylinder, or knock a cylinder over.
- Never tamper with a fusible plug.
- Always keep empty cylinders separate from full ones.
- Always secure empty and full cylinders with a cable or chain.
- Never store liquid or gas chlorine with ammonia.
- Do not move full one-ton containers with equipment designed to handle less than two tons.
- Do not connect liquid valves of two or more containers to a common manifold.
- Never store combustible or flammable materials near chlorine containers.
- Never attempt to weld an “empty” chlorine pipeline without purging it with air.
- Do not spray water on a leaking container. It will make the leak worse.
- Take shallow breaths in the chlorine room until you are sure there is not a chlorine leak.

Chlorine First Aid

Inhalation
1. Remove victim from contaminated area.
2. Keep victim warm, in a reclining position with head and shoulders elevated.
3. Give artificial respiration, if necessary.
4. Administer oxygen as soon as possible.
5. Call a physician immediately.

Skin Contact
1. Shower victim, removing all contaminated clothing.
2. Wash affected area with soap and water.

Eye Contact
1. Irrigate eyes with water for 15 minutes, holding eyelids wide apart.
2. Call a physician immediately.
3. Irrigate a second 15 minute period if physician is not immediately available.

Health Effects
- Low concentrations: Burning eyes, nose and throat; redness in the face; sneezing and coughing.
- High concentrations: Tightness in the throat and difficulty breathing.
- 1,000 ppm is fatal after a few breaths.
- Even an hour later, 35-51 ppm can be fatal.

Chlorine Resources

2,500 pounds or more: The EPA regulates chlorine quantities of 2,500 pounds or more.

The Chlorine Institute has a variety of information on safe chlorine handling online at http://www.chlorineinstitute.org/

Changing 150-Pound Cylinders
1. Turn valve stem clockwise to close cylinder.
2. Allow float in flow meter to drop to zero. Indicator on front of gas feeder should indicate no gas.
3. Wait about one minute. Float should remain at zero. If float flutters or does not drop to zero, the valve may not be closed tightly. Make sure the valve is closed before proceeding.
4. Turn off ejector, and make certain the gas supply indicator stays in the “No Gas” position by turning the “Reset” knob. If the indicator resets, either gas pressure is still present or there is an air leak in the system. Refer to instruction manual if an air leak is evident.
5. Loosen gas feeder yoke screw. Remove gas feeder from valve.
6. Replace gas cylinder.
7. Remove old lead gasket. Inspect and clean mating surfaces of gas feeder and valve. Install new unused lead gasket.
9. Crack open gas cylinder valve and close quickly. Check for leaks. If leaks exist, turn on ejector and repeat steps 2, 3, 4, and correct leaks.
11. Open gas cylinder valve, about ¼-turn only, and leave cylinder wrench on valve.
12. Turn ejector.

NOTES:
Contact your gas supplier if the cylinder valve or cylinder is considered to be defective.
Changing Ton Cylinders

1. Turn the valve stem clockwise to close ton container valve.
2. Allow float in flow meter to drop to zero. Indicator on front of gas feeder should show red indicating no gas. All liquid must be vaporized from the trap.
3. Wait about one minute. Float should remain at zero. If float flutters or does not drop to zero, valve may not be closed tightly. Make certain valve is closed before proceeding.
4. Turn off ejector and make certain the gas supply indicator stays in the “No Gas” position by turning the “Reset” knob. If the indicator resets, either gas pressure is still present or there is an air leak in the system. Refer to instruction manual if an air leak is evident.
5. Loosen gas feeder yoke screw. Remove gas feeder from valve.
6. Replace ton container. Make sure the full container is oriented with the valves in the vertical position, one valve above the other. The top valve will always supply gas chlorine and the bottom valve will give liquid chlorine.
7. Remove old lead gasket. Inspect and clean mating surfaces of gas feeder and valve. Install new unused lead gasket.
9. Be sure heater is plugged in and operating. An operating heater provides heat to vaporize any trapped liquid.
10. Crack open gas cylinder valve and reclose quickly. Check for leaks. If leaks exist, turn on ejector and repeat steps 2, 3, 4, and correct leaks.
12. Open ton container valve slowly about ¼-turn only and leave cylinder wrench on valve.
13. Turn on ejector.

NOTES:

Contact your gas supplier if the cylinder valve or cylinder is considered to be defective.
CHLORINE FIRST AID

Inhalation
6. Remove victim from contaminated area.
7. Keep victim warm, in a reclining position with head and shoulders elevated.
8. Give artificial respiration, if necessary.
9. Administer oxygen as soon as possible.
10. Call a physician immediately.

Skin Contact
3. Shower victim, removing all contaminated clothing.
4. Wash affected area with soap and water.

Eye Contact
4. Irrigate eyes with water for 15 minutes, holding eyelids wide apart.
5. Call a physician immediately.
6. Irrigate a second 15 minute period if physician is not immediately available.

Health Effects
- Low concentrations: Burning eyes, nose and throat; redness in the face; sneezing and coughing.
- High concentrations: Tightness in the throat and difficulty breathing.
- 1,000 ppm is fatal after a few breaths.
- Even an hour later, 35-51 ppm can be fatal.

Chlorine Resources
2,500 pounds or more: The EPA regulates chlorine quantities of 2,500 pounds or more.

The Chlorine Institute has a variety of information on safe chlorine handling online at http://www.chlorineinstitute.org/

Changing 150-Pound Cylinders
13. Turn valve stem clockwise to close cylinder.
14. Allow float in flow meter to drop to zero. Indicator on front of gas feeder should indicate no gas.
15. Wait about one minute. Float should remain at zero. If float flutters or does not drop to zero, the valve may not be closed tightly. Make sure the valve is closed before proceeding.
16. Turn off ejector, and make certain the gas supply indicator stays in the “No Gas” position by turning the “Reset” knob. If the indicator resets, either gas pressure is still present or there is an air leak in the system. Refer to instruction manual if an air leak is evident.
17. Loosen gas feeder yoke screw. Remove gas feeder from valve.
18. Replace gas cylinder.
21. Crack open gas cylinder valve and close quickly. Check for leaks. If leaks exist, turn on ejector and repeat steps 2, 3, 4, and correct leaks.
23. Open gas cylinder valve, about \(\frac{1}{4} \)-turn only, and leave cylinder wrench on valve.
24. Turn ejector.

NOTES:
Contact your gas supplier if the cylinder valve or cylinder is considered to be defective.

Changing Ton Cylinders
14. Turn the valve stem clockwise to close ton container valve.
15. Allow float in flow meter to drop to zero. Indicator on front of gas feeder should show red indicating no gas. All liquid must be vaporized from the trap.
16. Wait about one minute. Float should remain at zero. If float flutters or does not drop to zero, valve may not be closed tightly. Make certain valve is closed before proceeding.
17. Turn off ejector and make certain the gas supply indicator stays in the “No Gas” position by turning the “Reset” knob. If the indicator resets, either gas pressure is still present or there is an air leak in the system. Refer to instruction manual if an air leak is evident.
18. Loosen gas feeder yoke screw. Remove gas feeder from valve.
19. Replace ton container. Make sure the full container is oriented with the valves in the vertical position, one valve above the other. The top valve will always supply gas chlorine and the bottom valve will give liquid chlorine.
20. Remove old lead gasket. Inspect and clean mating surfaces of gas feeder and valve. Install new unused lead gasket.
22. Be sure heater is plugged in and operating. An operating heater provides heat to vaporize any trapped liquid.
23. Crack open gas cylinder valve and reclose quickly. Check for leaks. If leaks exist, turn on ejector and repeat steps 2, 3, 4, and correct leaks.
25. Open ton container valve slowly about \(\frac{1}{4} \)-turn only and leave cylinder wrench on valve.
26. Turn on ejector.

NOTES:
Contact your gas supplier if the cylinder valve or cylinder is considered to be defective.
CORROSION CONTROL

Corrosivity can be defined as the tendency of water to dissolve metal. It can affect metal structures and equipment, such as pipes, valves and pumps parts. Water that has a strong tendency to do this is said to be highly corrosive, water that does not do so readily is said to be weakly corrosive or non-corrosive. Highly corrosive water (water having high corrosivity) poses both a health hazard and an economic burden. Undesirable metals dissolved by corrosive water may be detrimental to health. An example of this is lead and/or copper dissolved in water as a result of the corrosive action on copper pipes and lead-based solder. If corrosion goes unchecked metal pipes and equipment will be severely damaged or destroyed. Replacement of corrosion damaged material and equipment can be very costly.

Corrosion is an extremely complex phenomenon. Corrosion is affected by five water quality parameters; pH, hardness, alkalinity, temperature, and total dissolved solids (TDS). Of these, pH has the greatest influence. Generally, the lower the pH the more corrosive the water will be. The presence of hardness and alkalinity tends to lessen the corrosivity, so water with higher hardness and alkalinity are usually less corrosive that water with lower hardness and alkalinity. TDS and temperature are less important, but an increase of either one tends to increase corrosivity.

As a general rule, surface water sources are more corrosive that groundwater sources. This is due to the fact that most surface water sources have low pH, low hardness, low alkalinity, and low TDS, whereas groundwater tends to be just the opposite; higher pH, higher hardness, higher alkalinity and higher TDS.

Since pH has the greatest impact, corrosivity can be controlled by the addition of chemicals to raise the pH. As it happens, the most common chemicals used to raise pH (lime and soda ash) also increase hardness and alkalinity, which help reduce corrosivity.

Corrosivity is considered a secondary contaminant with a SMCL of noncorrosive. The Langlier Saturation Index (LSI), which takes into consideration pH, total dissolved solids, hardness, alkalinity, and temperature, is commonly used to determine if water is corrosive or not. The analytical lab doing your water tests can determine your LSI.

There are two strategies to reduce or control the corrosivity of water; adjustment of the chemical characteristics of the water (primarily, pH control), known as precipitation, and covering the surface of pipes with a protective coating, known as passivation.

pH Control
Of the five factors that affect corrosivity, pH is the most significant. Low pH contributes to the corrosivity of water. So raising the pH will reduce corrosivity. There are a number of pH increase treatment options available to small systems to increase pH.

Aeration
Some waters may have excess dissolved carbon dioxide (CO₂). This is most likely to happen in slow moving streams or lakes when metabolic activity releases CO₂ and the lack of turbulence allows the dissolved CO₂ to buildup. A buildup of CO₂ results in a low pH because of the CO₂/H₂CO₃ equilibrium. An increase in CO₂ increases the carbonic acid (H₂CO₃), thus lowering the pH. If CO₂ is removed the process is reversed. CO₂ is most prevalent in groundwater
although it can occur in surface water under ice cover. The aeration process, as described in Section 4.6b, scrubs the CO₂ from the water. The result is a higher pH and a decrease in corrosivity.

Limestone Contactors

A limestone contactor, sometimes called a neutralizing filter, can be used to raise the pH of water. Limestone is calcium carbonate (CaCO₃). As low pH water passes through the contactor it dissolves the CaCO₃. Through a chemical reaction, similar to the CO₂/H₂CO₃ resulting in a higher pH and a decrease in corrosivity. A limestone contactor is an inline canister device that is convenient for small system applications. A possible drawback with the use of a limestone contactor is that calcium ions are also released into the water which increases hardness.

Soda Ash

Soda ash (Na₂CO₃) can also be used to raise the pH. The chemistry is similar to the use of and causes a higher pH and a decrease in corrosivity results. Soda ash is normally fed into the water system as a solution using a liquid chemical feed pump. The feed equipment is almost the same as that used to feed sodium or calcium hypochlorite.

Sodium Hydroxide

Sodium hydroxide (NaOH), commonly called caustic soda, is readily soluble in water and a very strong base. It can be used to raise pH in water systems, but it is extremely corrosive and can be very dangerous if mishandled. It is critical that workers who handle NaOH be well trained. Diluted NaOH is normally fed into the water system using a liquid chemical feed pump. The feed equipment is almost the same as that used to feed sodium or calcium hypochlorite.

Chemical Coatings

Corrosion can be inhibited by adding chemicals to the water that adhere directly to the pipe surface or in combination with naturally-occurring constituents in the water form films or coatings on the pipe surface. These coatings prevent contact between the metal pipe surface and the corrosive water, providing a barrier to corrosion reactions.

Phosphates and Silicates

Silicates and orthophosphates are frequently used by small systems to form protective films on pipe surfaces. The protective coating prohibits the corrosive water from contacting the metal pipe. Sodium silicate and phosphate must be continuously added to the systems to be effective.

Carbonate Precipitates

When calcium and magnesium carbonates precipitate they can form a protective coating on the inside of water pipe. Whether or not the carbonates will precipitate depends on the pH and amount of alkalinity and hardness present in the water. If they all are relatively high, precipitation is enhanced. Consequently, when limestone (CaCO₃) and soda ash (Na₂CO₃) are used to raise the pH there is a side benefit of the protective carbonate coating. In fact, some corrosion control strategies increase pH, alkalinity and hardness.
The LSI is one of several tools used by water operators for stabilizing water to control both internal corrosion and the deposition of scale. The LSI is an equilibrium model derived from the theoretical concept of saturation and provides an indicator of the degree of saturation of water with respect to calcium carbonate. It can be shown that the LSI approximates the base 10 logarithm of the calcium saturation level. The Langelier saturation level approaches the concept of saturation using pH as a main variable. The LSI can be interpreted as the pH change required to bring water to equilibrium.

Water with a Langelier saturation index of 1.0 is one pH unit above saturation. Reducing the pH by 1 unit will bring the water into equilibrium. This occurs because the portion of total alkalinity present as \(\text{CO}_3^{2-} \) decreases as the pH decreases, according to the equilibria describing the dissociation of carbonic acid:

- If LSI is negative, then the water is under saturated with calcium carbonate and will trend to be corrosive in the distribution system. There is no potential to scale and the water will dissolve CaCO3.
- If LSI is positive, then the water is over saturated with calcium carbonate and will tend to deposit calcium carbonate. Scale can form and CaCO3 precipitation may occur in the distribution system.
- If LSI is close to zero: then the water is just saturated with calcium carbonate and will neither be strongly corrosive or scale forming. Water quality or changes in temperature, or evaporation could change the index.

The LSI is probably the most widely used indicator of cooling water scale potential. It is purely an equilibrium index and deals only with the thermodynamic driving force for calcium carbonate scale formation and growth. It provides no indication of how much scale or calcium carbonate will actually precipitate to bring water to equilibrium.

The LSI is an approximate indicator of the degree of saturation of calcium carbonate in water. It is calculated using the pH, alkalinity, calcium concentration, total dissolved solids, and water temperature of a water sample collected at the tap.

It simply indicates the driving force for scale formation and growth in terms of pH as a master variable. In order to calculate the LSI, it is necessary to know the alkalinity (mg/L as CaCO3), the calcium hardness (mg/L Ca2+ as CaCO3), the total dissolved solids (mg/L TDS), the actual pH, and the temperature of the water (°C). If TDS is unknown, but conductivity is, one can estimate mg/L TDS using a conversion table such as the one presented here. LSI is defined as:

\[
\text{LSI} = \text{pH} - \text{pH}_s
\]

Where:

- \(\text{pH} \) is the measured water pH
- \(\text{pH}_s \) is the pH at saturation in calcite or calcium carbonate and is defined as:

\[
\text{pH}_s = (9.3 + A + B) - (C + D)
\]

Where:

\[
A = \frac{\log_{10} [\text{TDS}] - 1}{10}
\]

\[
B = -13.12 \times \log_{10} (°C + 273) + 34.55
\]

\[
C = \log_{10} [\text{Ca}^{2+} \text{ as CaCO}_3] - 0.4
\]
D = \log_{10} \text{[alkalinity as CaCO}_3\text{]}

However, there is some controversy concerning the correlation of these indices, and particularly the LSI, with the corrosivity of waters. While some sectors of the water management industry squarely use the indices as a measure of the corrosivity of their waters, more alert specialists are very cautious as to how far one can extrapolate the indices to such usage.
The fluoridation of water supplies has been described as one of the great advances in modern public health. Fluoridation is a process of adding a naturally occurring element, fluorine, to drinking water for the purpose of preventing tooth decay, using guidelines developed by scientific and medical research. The effectiveness of fluoridation depends on how consistently the water treatment operator maintains the optimal fluoride concentration.

Water fluoridation is the deliberate upward adjustment of the natural trace element, fluorine (in the ionic form of fluoride), using guidelines developed by scientific and medical research, for the purpose of promoting the public’s health through the prevention of tooth decay. Fluoride is present in small but widely varying amounts in practically all soils, water supplies, plants, and animals, and thus is a normal constituent of all diets. The highest concentrations in mammals are found in the bones and teeth. All public water supplies in this country contain at least trace amounts of natural fluoride.

Few public health measures have been accorded greater clinical and laboratory research, epidemiologic study, clinical trial, and public attention—both favorable and adverse—than the fluoridation of public water supplies.

The most positive health effect of water fluoridation is the prevention of tooth decay. The diverse health effect from high levels of fluoride in the drinking water is dental fluorosis. Controversy over fluoridation continues to exist and many charges have been leveled against it; these changes are discussed in a later section.

Dental Fluorosis
Dental fluorosis is defined as the whitish to brownish spots seen on teeth. It has been clearly established that high levels of fluoride in the drinking water will cause fluorosis (or “mottled enamel”, as it is sometimes called). Dental fluorosis has been recognized since the turn of the century in people with high exposure to naturally occurring fluoride in drinking water. It has always been more prevalent in fluoridated than non-fluoridated areas. Dental fluorosis occurs only during tooth formation and becomes apparent upon eruption of the teeth. It ranges from very mild symmetrical whitish areas on teeth (very mild dental fluorosis) to pitting of the enamel, frequently associated with brownish discoloration (severe dental fluorosis). The very mild form is barely detectable even by experienced dental personnel. Moderate and severe forms of dental fluorosis, considered by some investigators as presenting a cosmetic problem, do not appear to produce adverse dental health effects, such as the loss of tooth function, and represents less than 6% of the cases of fluorosis nationally.

Maximum Contaminant Levels
The EPA has established regulatory limits on the fluoride content of drinking water. Based on a detailed review of health effects studies on fluoride, the EPA set a primary MCL of 4 mg/L in water systems to prevent crippling skeletal fluorosis. A secondary MCL of 2 mg/L has been established by EPA as the level above which dental fluorosis is likely to occur.

Fluoride Compounds
Three commonly used fluoride chemicals should meet the AWWA standards for use in water fluoridation—sodium fluoride (B701-90), sodium fluorosilicate (B702-90), and fluorosilicic acid.
Imported chemicals especially should be checked for compliance with these standards.

Sodium Fluoride
The first fluoride compound used in water fluoridation was sodium fluoride. Sodium fluoride (NaF) is a white, odorless material available either as a powder or in the form of crystals of various sizes. It is a salt that in the past was manufactured by adding sulfuric acid to fluorspar and then neutralizing the mixture with sodium carbonate. Sodium fluoride has a formula weight of 42.00, a specific gravity of 2.79, and its solubility is practically constant at 4.0 grams per 100 milliliters in water at temperatures generally encountered in water treatment practice.

The relatively constant 4% solubility of sodium fluoride is the basis for the design of the saturator. The pH (hydrogen-ion concentration) of a sodium fluoride solution varies with the type and amount of impurities, but solutions prepared from the usual grades of sodium fluoride exhibit a nearly neutral pH (approximately 7.6). It is available in purities ranging from 97 to over 98%, with the impurities consisting of water, free acid or alkali, sodium fluorosilicate, sulfites and iron, plus traces of other substances. Approximately 19 pounds of sodium fluoride will add 1 ppm of fluoride to 1 million gallons of water.

Sodium Fluorosilicate
Sodium fluorosilicate (Na₃SiF₆), also known as sodium silicofluoride is widely used as a chemical for water fluoridation. Sodium fluorosilicate is a white, odorless crystalline powder. Its molecular weight is 188.06 and its specific gravity is 2.679. Its solubility varies from 0.44 grams per 100 milliliters of water at 0°C to 2.45 grams per 100 milliliters at 100°C. The pH’s of solutions are definitely on the acid side, with saturated solutions usually exhibiting a pH between 3.0 and 4.0 (approximately 3.6). Sodium fluorosilicate is available in purities of 98% or greater, the principal impurities being water, chlorides, and silica. Approximately 14 pounds of sodium fluorosilicate will add 1 ppm of fluoride to 1 million gallons of water.

Fluorosilicic Acid
Fluorosilicic acid (H₂SiF₆), also known as hydrofluosilicic, hexafluosilicic, or silicofluoric acid is a 20 to 35% aqueous solution with a formula weight of 144.08. It is a straw-colored, transparent, fuming, corrosive liquid having a pungent odor and an irritating action on the skin. Solutions of 20 to 35% fluorosilicic acid exhibit a low pH (1.2), and at a concentration of 1 ppm can slightly depress the pH of poorly buffered potable waters. It must be handled with great care because it will cause a “delayed burn” on skin tissue. The average density of 23% acid is 10.1 lbs/gal. Fluorosilicic acid (23%) will freeze at approximately 4°F or -15.5°C. It takes approximately 46 pounds (4.4 gallons) of 23 % acid to add 1 ppm of fluoride to 1 million gallons of water.

Hydrofluoric acid is an extremely corrosive material. Its presence in fluorosilicic acid, whether from intentional addition, i.e., “fortified” acid or from normal production processes demands careful handling. The hydrofluoric fumes from fluorosilicic acid are lighter than air, unlike chlorine fumes, which are heavier than air. Thus, the acid fumes will rise instead of settling to the floor.

Attempts to dilute the acid are subject to errors in measuring both the acid and the diluting water. It is much better to use the acid undiluted as it comes from the containers in which it is shipped. If the acid is too concentrated for the solution feeder to handle, then weaker solutions of other
compounds are generally indicated—for instance, saturated solutions of sodium fluoride. CDC strongly recommends against the dilution of acid. If the acid must be diluted, care should be taken to avoid the formation of a precipitate of silica, which will appear despite the quality (hardness) of the water used for dilution. Dilutions between 10:1 and 20:1 (water: acid) are where insoluble silica precipitates are most likely to occur. Softening the water will not prevent this precipitation.

Optimal Fluoride Levels
These levels are based on the annual average of the maximum daily air temperature in the area of the involved school or community. The recommended optimal fluoride concentrations for fluoridated water supply systems are stated in WV 64CSR3. The recommended control range is shifted to the high side of the optimal fluoride level for two reasons. First, it has become obvious that many water plant operators try to maintain the fluoride level in their community at the lowest level possible. The result is that the actual fluoride level in the water will vary around the lowest value in the range instead of around the optimal level. Setting a higher level for the bottom of the recommended fluoride control limits will help overcome this problem. Second, some studies have shown that sub-optimal fluorides are relatively ineffective in actually preventing dental caries. Even a drop of 0.2 ppm below optimal levels can reduce dental benefits significantly. Skewing the control limits of the optimal fluoride level will help assure that the benefits of fluoridation are being maintained even if the fluoride level in the water varies slightly. In water fluoridation, underfeeding is a much more serious problem than overfeeding.
FLUORIDATION FEED SYSTEMS

Fluoride must be fed into the water supply system in liquid form or as a solution. This is true for both dry chemical feeders and solution feeders. Fluorides can be fed into a water supply in the following ways:

- **Dry Chemical Feeds** - The amount of dry chemical compound (usually sodium fluorosilicate) can be measured with a machine, then added to a mixing tank (solution tank) where it is thoroughly mixed and then delivered to the main flow of water, either by gravity or using a solution pump.

- **Acid Feed** - A small pump can be used to add solutions of fluorosilicic acid directly to the water supply system. This method can utilize the acid as delivered.

- **Saturated Solution Feed** - Saturated solutions of sodium fluoride in constant strengths of 4% can be produced in a saturator tank at almost any temperature of water encountered in the usual water plant. This saturated solution can be pumped with a small solution feeder directly into the main flow of water of a water supply system. This use of these devices eliminates the need for weighting sodium fluoride and stirring to ensure dissolving.

- **Unsaturated Solution Feed** - Unsaturated solutions of sodium fluorosilicate or sodium fluoride may be prepared by weighing amounts of the compounds, measuring quantities of water, and thoroughly mixing them together. This method of feeding fluorides is not very desirable and should be avoided.

Types of Equipment

Devices for feeding fluorides accurately have generally been adapted from those machines originally designed for feeding a variety of liquid or solid chemicals in water treatment and industrial plants. In many cases, the equipment is the same.

Fluoride chemicals are always added to a water supply as liquids, but they may be measured in either liquid or solid form. The solid form of fluorides must be dissolved into a solution before entering the water supply system. Chemical feeders can therefore be broadly divided into two types: (1) Metering pumps, which are essentially small pumps used to feed a measured quantity of liquid fluoride solution during a specific time; and (2) dry feeders, which deliver a predetermined quantity of the solid material during a given time interval. The term “metering pump” is used in this manual for the terms “solution pump,” “feed pump,” and “solution feeder.”

The choice of a feeder depends on the fluoride chemical used and the amount to be fed. The rate of feed will depend on the desired fluoride content of the treated water, the amount of water to be treated after passing a given point, and the fluoride content of the untreated water. In general, metering pumps (with acid or with saturators) are used for smaller water supply systems and dry feeders for larger systems. There is a wide range within which either type would be equally successful.

Metering Pumps

For feeding fluoride solutions, almost any type of metering pump that is used for feeding other water treatment chemicals can be used with, at most, only minor modification in construction details. If there is, indeed, any requirements for a fluoride metering pump that distinguishes it from metering pumps for other purposes, it is the accuracy and constancy of delivery. The optimal fluoride level has been prescribed between very narrow limits and thus requires that
fluoride be added in precise proportion to the quantity of water being treated. This requirement favors the positive displacement type of metering pump.

Most metering come equipped with plastic heads and resilient check valves, which are generally satisfactory for discharge pressures up to 150 psi. For higher pressures, corrosion-resistant alloys such as 316 stainless steel or Carpenter 20 alloy are required for metering pump head construction. The type of plastic the metering pump heads should be made of depends upon the fluoride chemical used. Acrylic, polypropylene, and PVC heads can be used for fluorosilicic acid as well as for sodium fluoride and sodium fluorosilicate. In addition, Kynar, Ryton, and Tril heads can be used with sodium fluoride and sodium fluorosilicate. Metering pump heads of stainless steel 316, as well as 20 series stainless steel alloys, can be used with all three fluoride chemicals.

The check valves can be made of ceramic, Teflon, or 316 stainless steel. If fluorosilicic acid is used, then the check balls and spring must be coated with Teflon or its equivalent. Note, do not use ceramic check balls, if fluorosilicic acid is used! The acrylic head is one of the most popular heads on metering pumps used in water fluoridation.

Diaphragm Metering Pumps

The diaphragm pump is by far the most common type of metering pump used in fluoridation. A flexible diaphragm is driven to alternately force solution out of a chamber, and on the return stroke, the diaphragm refills the chamber by pulling solution from a reservoir. In a typical diaphragm pump there is no chemical packing that would result in leaking through a packing gland. Typically, a diaphragm is made of hypalon, Teflon, polyurethane, or viton.

Diaphragm pumps are ideally suited for medium-pressure service—up to about 150 psi. They should not be used against pressure less than about 15 psi and never against a vacuum, such as that obtained in the suction side of a well pump. A constant positive pressure on the discharge is a guarantee of their continued accuracy. Some metering pumps are equipped with spring- or rubber-loaded discharge valves that assure the maintenance of such positive pressures. Negative suction heads should not exceed 4 feet. In other words, the metering pumps should be no more than 4 feet above the solution container.

Saturators

The saturator is a type of chemical feed equipment unique to fluoridation. The principle of a saturator is that a saturated fluoride solution will result if water is allowed to trickle through a bed containing a large amount of sodium fluoride. A small pump then delivers the solution of sodium fluoride into the water supply system. Saturated solutions of sodium fluoride can be manually prepared and is sometimes preferred.

Upflow Saturators

In an upflow saturator, the layer of sand and gravel is eliminated, and the bed of undissolved sodium fluoride is placed on the bottom of the tank. A spider type water distributor located at the bottom of the tank contains hundreds of very small slits. Water, forced under pressure through these slits, flows upward through the sodium fluoride bed at a controlled rate to assure the desired 4% solution. The metering pump intake line floats on top of the solution in order to avoid withdrawal of undissolved sodium fluoride. The water pressure requirements are 20 psi minimum to 125 psi maximum, and the upward flow must not exceed 2 gpm. Since introduction of water to the bottom of the saturator constitutes a definite cross-connection, a mechanical
siphon-breaker must be incorporated into the water line. Also, a minimum of 12 inches of sodium fluoride must be kept in the bottom of the tank.

Liquid Level Switches

Liquid level switches, or controllers, are used to automatically maintain preset (fluoride) liquid levels in sodium fluoride saturators. In rare instances, they are used with fluorosilicic day tanks when these are filled from a bulk storage tank or used with dry feeder solution tanks. The switches keep the tanks from going dry or overflowing, and may also be used to prevent a metering pump from running dry. The switch may be of the manual (lower cost) or electrical (higher cost) type.

Softeners

When fluoridation system uses a sodium fluoride solution (primarily a saturator), remember that while sodium fluoride is quite soluble, the fluorides of calcium and magnesium are not. Thus, the fluoride ions in solution will combine with calcium and magnesium ions in the make-up water and form a precipitate, which can clog the metering pump, the injection point, the metering pumps suction line, the saturator bed, etc. The water pressure to the softener should be checked. Most manufacturers recommend operation between 20 psi and 100 psi. For this reason, water used for sodium fluoride saturators should be softened whenever the total hardness exceeds 50 ppm, or even less if the amount of labor involved in clearing stoppages or removing scale is objectionable. Remember—the entire water supply need not be softened-only the water used for solution preparation (the make-up water).

Two types of softening treatment are available: ion exchange and the use of polyphosphates (calgon, micromet, etc.). The ion exchange method removes all hardness. Polyphosphates are used for sequestering (keeping in solution) calcium and magnesium and other hardness elements. The polyphosphate may be added directly into the solution tank, or in some cases, a metering pump will be required.

Dry Feeders

Dry chemical feeders deliver a predetermined quantity of fluoride chemical in a given time interval. The two types of dry feeders are volumetric and gravimetric. The volumetric dry feeder delivers a measured volume of dry fluoride chemical per unit of time and the gravimetric dry feeders deliver a measured weight of chemical per unit of time. In fluoridation, dry feeders are used to feed sodium fluorosilicate almost exclusively. Very few water supply systems use sodium fluoride with dry feeders because the high cost of this chemical usually dictates the use of sodium fluorosilicate.

Volumetric Feeders

Volumetric feeders essentially consist of a combination of a driving mechanism for delivering a constant volume of dry compound, a hopper for holding the compounds, and a chamber for dissolving the compound before discharge into the water supply.

The chemical delivery mechanism distinguishes one type of volumetric feeder from another. Almost every manufacturer has a different design for feeding chemicals volumetrically and can be classified according to several types: rotating disk, oscillating pan, vibratory pan, rotating screw, rotating roller, star wheel, and combination of these types. More information about these types of feeders may be found in the Class I Water Operator Course Manual or the CDC Water Fluoridation: A Manual for Water Plant Operators.
Gravimetric Feeders
Gravimetric feeders discharge chemicals at a constant weight rather than at a constant volume during a given period of time. There are two general types of gravimetric dry feeders—those based on loss-in-weight of the feeder and those which are based on the weight of material on a section of a moving belt. Many gravimetric dry feeders also incorporate some of the features of volumetric feeders, in that they have rotary feed mechanism between the hopper and the weighing section, or use a mechanical vibrator to move chemicals out of the hopper. Since, ultimately, it is the weight of material per unit of time that is measured and regulated, such variables as material density or consistency have no effect on feed rate. This accounts for the extreme accuracy of which these feeders are capable.

Calibration of Dry Feeders
The rate of feed of a dry chemical feeder can be varied by adjusting the controls according to a scale. The numbers on the scale have no particular units and cannot be converted to ppm or mg/L until a calibration chart or curve has been prepared. A separate calibration chart is required for each machine and for each chemical fed by the machine. If it is possible to operate your water plant at more than one rate, then you must also have different calibration charts for each plant rate.

To calibrate a dry feeder, fill the hopper to the normal depth with the chemical to be fed. Be sure the chemical is dry, free-flowing, and contains no lumps. Set the machine adjustment on a low number—certainly lower than the normal operation. Allow the machine to run for a few minutes so that it is feeding uniformly. Use a pan or cardboard box (which has been weighed empty), to catch the total discharge of chemical from the feeder for several minutes (say 5 minutes). Weigh the chemical on the laboratory balance (in grams) and record on a chart. Repeat the same operation for other scale settings on the machine—usually four or five different settings. Be sure to cover the full range at which the feeder will be operated. Post the calibration curves near the machine (be sure to label each curve for the right machine) so that they can be used without mistakes or loss of time.

The feed rate of a given machine, when operating at a given setting, will vary depending on machine wear, humidity, variation in texture of the chemical being fed, etc.; therefore, a calibration curve should not be used over an extended period without verifying the accuracy of the curve.

Fluoride Injection Point
The first consideration in selecting the fluoride injection point is that it must be a point through which all the water to be treated passes. In a water plant, this can be in a channel where the other water treatment chemicals are added, in a mine coming from the filter, or in the clear well. If there is a combination of facilities, such as a treatment plant for surface water plus supplemental wells, it must be at a point where all water from all sources passes. If there is no such common point, it means that separate fluoride feeding installations will have to be made for each water facility.

Another consideration in selecting a fluoride injection point is the question of fluoride losses in filters. Whenever possible, fluoride should be added after filtration to avoid the substantial losses that can occur, particularly with heavy alum doses or when magnesium is present and the lime-soda ash softening process is being used. There can be up to a 30% loss if the alum dosage
rate is 100 ppm of alum. On rare occasions, it may be necessary to add fluoride before filtration, such as in the case where the clearwell is inaccessible or so far away from the plant that moving chemicals would no be economical, or to avoid a second separate injection point.

When other chemicals are being fed, the question of chemical compatibility must be considered. If any of these other chemicals contain calcium, the fluoride injection point should be as far away as possible in order to minimize loss of fluoride by precipitation. For example, lime (for pH control) is being added to the main leading from the filters, fluoride can be added to the same main but at another point, or it can be added to the clearwell. If the lime is being added to the clearwell, the fluoride should be added to the opposite side. If it is not possible to separate injection points, an in-line mixer must be used. If post-lime is added in treatment, it is preferable to use a sodium fluoride make-up water line before the lime is added.

In a single well system, the fluoride injection point will be in the discharge line of a pump. If there is more than one pump, it can be in the line leading to the elevated tank or other storage facility. In the surface water treatment plant and the water softening plant, the ideal location of the fluoride injection point is in the line from the rapid sand filters to the clearwell. This will provide maximum mixing. Sometimes the clearwell is located directly below the rapid sand filter, and discharging any chemicals directly to the clearwell is difficult.

At the fluoride injection point, the location of the chemical line should be 45° from the bottom of the pipe and protrudes 1/3 of the pipe diameter into the pipe. This will allow better mixing without sediments collecting around the injection point. The fluoride injection point should never be located at the top of the line because of the air binding problems. A valve, injection nozzle, or corporation stop should be part of the installation. It is strongly recommended that an anti-siphon device always be included.

Equipment Installation

Fluoridation installation should be considered during the design stage. The decisions made during the design phase will greatly affect the installation. The best installation is one that incorporates as many of these factors as possible:

1. Simple, accurate feeding equipment
2. Minimum chemical handling
3. Consistent with the above two factors, the lowest overall cost based on amortization of equipment and cost of chemical
4. Ease in collecting reliable records
5. Minimum maintenance of feeder, piping, and injector equipment

A thorough knowledge of the types of equipment available is a must in order to determine the best installation.

Fluorosilicic Acid Installation

The simplest and easiest fluoridation installation is an acid feed system with a single well. The typical installation would include a carboy of acid (or drum), small metering pump, and scales. The carboy (or drum) should be vented to the outside and sealed around the pump intake line and vent line. If the room where the fluoride equipment is located is exposed to strong direct sunlight, the tubing pigment should be black. The black color screens out the ultraviolet rays, which can cause cracking of the translucent tubing.
The metering pump should be located on a shelf not more than 4 feet above the carboy or solution container, if possible. Note: Many manufacturers recommend that the pump be located so that it has a flooded suction line (low). This is not recommended in fluoridation. The suction line should be as short and straight as possible, there should be a foot-valve and strainer at the bottom and, if necessary, a weight to hold it down. The discharge line from the metering pump should be as short and straight as possible. Avoid sharp curves or loops in the line. Injecting solution into the top of a pipe should be avoided, since air collects there and can work its way into the metering pump check valve or the discharge line and cause air-binding. It is recommended that an anti-siphon valve be installed at the injection point. Many metering pumps come equipped with, or have available as an accessory, an anti-siphon discharge valve. This may be mounted directly on the pump head. If solution is to be fed into an open channel or a low-pressure pipeline, a “loaded” discharge valve should be used. This is a spring-loaded check or diaphragm valve, which will not open until the pump discharge pressure exceeds a certain fixed valve. A common setting is about 15 psi.

The installation of an acid feed system in a larger water plant that uses bulk storage is similar to the simple well installation with some exceptions. A day tank is necessary instead of a carboy. Under normal operating conditions, the day tank should not contain over a 2 days’ supply of acid. The day tank must also be sealed around the outer lip of the container, the vent hole, the pump suction line opening, and the fill pipe entrance. There should be flexible connections in the bulk storage line and in the pump suction line (if it is not flexible tubing). This is to prevent inaccurate reading on the scales. The vent line should go from the day tank to the bulk storage tank (near the top), instead of just to an outside wall. The metering pump should discharge the acid into the line going into a clearwell. If the discharge is directly into the clearwell, the anti-siphon device is still needed at this discharge point. The bulk storage tank must be vented on top and should be surrounded by a containment wall in case of spills. The acid will freeze if exposed to sustained temperatures at or below 4°F.

Sodium Fluoride Installation (Saturators)

The sodium fluoride saturator is a very simple fluoridation system. It requires only a little more space and piping than the straight acid feed. Many of the same comments made on the acid feed installations apply to the saturator installations. The metering pump should be located not more than 4 feet over the low saturated water line in the saturator. The suction line should be as short as possible. The metering pump should be equipped with an anti-siphon valve. There also should be an anti-siphon valve at the fluoride injection point if the fluoride solution is injected into the water main.

The fluoride saturator does not need to be sealed as tightly as the acid carboy. Saturator systems should have a water meter and, if necessary, a water softener. The feed water line should contain a Y-strainer and sufficient unions to allow easy removal of piping. When mounting a metering pump on a shelf or platform above the saturator, it is advisable to offset it sufficiently to permit access to the container for filling and cleaning. Mounting the metering pump on the lid of the saturator is not recommended.

A saturator should never be pushed to its design capacity limit for any length of time. When a saturator’s capacity is approached, then another method of fluoridation should be considered, such as the use of fluorosilicic acid. The upflow saturator installation is very similar to the downflow saturator installation, with some exceptions. If a liquid switch is used, CDC recommends that there be a solenoid valve and a vacuum breaker be installed. The vacuum
breaker must be between the solenoid valve and the water inlet. Also, CDC recommends that a flow restrictor with a maximum flow of 2 gallons per minute be installed to allow adequate contact time. (Note: Many states allow flow restrictors of up to 4 gpm.) There must be a minimum water pressure in the inlet line of 20 psi.

The recommendation for a different kind of metering pump plug, with sign, to prevent connecting the metering pump into a “hot” electrical outlet is especially important with an upflow saturator installation. This is because a solenoid valve requires the “hot” electrical connection, and, it thus becomes easy to make a mistake.

Sodium Fluorosilicate Installation (Dry Feeders)

Only the installation on the volumetric dry feeder will be discussed because it is the most typical one used. The gravimetric feeder installation would be, in essence, the same. When installing a dry feeder, placement should be so that the solution from the solution tank can fall directly into the chemical feed channel, if possible. If other considerations dictate that the feeder be placed some distance from the point of application, the drain line should be as direct as possible, with adequate slope and sufficient size to preclude precipitation build-ups and subsequent stoppages.

Obviously, the dry feeder installation must be on a firm, level foundation if the scales are expected to perform satisfactorily. If there is a small hopper on the feeder, it must be readily accessible for filling, and if an extension hopper is used, it should extend vertically upward to the filling area, without angles that could trap material. For the water supply line to a volumetric feeder, there must be a section of flexible hose between the solution tank and the water pipe to permit free movement of the feeder and scald platform.

The water supply line to a dry feeder must be equipped with an air-gap or mechanical vacuum-breaker, or some other type of anti-siphon device. The air gap is the most positive protection against the dangers of a cross-connection. If water pressure is too high to permit the use of an air gap, one of the other devices may be sued, but in any case, the vacuum breaker must be placed between the point of entry to the solution tank and any restrictive device in the pipeline, and must be installed in an elevated location.

Chemical Storage and Handling

A number of criteria govern the selection of a storage site for fluoridation chemicals: Dry chemicals must be kept dry and convenient to the hopper; preferably they should be isolated from other water treatment chemicals to preclude accidental intermixing; the storage area must be clean and well ventilated, and should be equipped with running water and a floor drain for ease in cleaning up spills.

Dry fluoride compounds, i.e., sodium fluoride and sodium fluorosilicate, have a tendency to compact or cake when exposed to moisture or when bags are stacked too high. Similar conditions can result from long periods of storage, so an oversupply of chemicals should be avoided. Store dry fluorides on pallets, in stacks preferably not more than six bags high. If fiber drums are used, keep the tops closed to prevent moisture absorption. Do not allow unauthorized personnel, especially small children, in areas where fluoride chemicals are fed or stored.

When fluoride sacks are handled carelessly, or if the bags are emptied too quickly, airborne fluoride dust levels may become dangerously high. Do not toss the bags. When opening the bags, cut an even slit across the top to avoid tearing the sides. Pour the contents of the bags
gently into the feed hopper. Do not bellows the empty bag. Good ventilation is absolutely necessary in work areas, even if there is no visible dust production.

The disposal of empty fluoride containers has always been a problem. Do not re-use empty fluoride containers! The temptation to re-use fiber drums is strong, since the drums are convenient and sturdy. Paper bags are dusty and could cause a hazard if they are burned. The best approach is to rinse all empty containers with plenty of water—even the paper bags are strong enough to withstand repeated rinses. After all traces of fluoride are removed, the bags should be disposed of in a proper manner. Check with the solid waste division of your state’s Environmental Protection Program for correct advice. Even supposedly well-rinsed drums should never be used where traces of fluoride could present a hazard. If possible, the storage area should be kept locked and not be used for any other purpose. Workers should particularly be warned against eating in a fluoride storage area.

Fluorosilicic acid presents particular storage problems, for the vapors are corrosive and will even etch glass. Containers must be kept tightly closed and vented to the outdoors. Large quantities of acid can be stored in underground or enclosed tanks equipped with outside vents. The 30% acid has a freezing point at 4° F. The 100% acid will freeze at -4° F. Do not store fluorosilicic acid containers in the hot sun where the containers can build hydrostatic pressure, or in open areas subject to winter freezing.

When fluorosilicic acid is purchased in bulk, tanks are necessary for storage. Bulk storage tanks can be made of fiberglass (coated with epoxy resin), polyethylene, or rubber-lined steel. The polyethylene should be manufactured from high density cross-linked material (cross-linked provides strength). The plastic should contain a minimum of 0.25% ultraviolet stabilizer to protect against sun light. The polyethylene storage tanks are still relatively new—so the longevity of the tank is yet to be determined. Fiberglass and rubber-lined steel tanks are used about equally for bulk storage of fluorosilicic acid. Fiberglass tanks usually will last about 7-10 years. Several years ago, fiberglass tanks were the most popular; then, the steel tanks became the most popular; now, the polyethylene bulk storage tanks are the most frequently purchased. The steel tanks are always lined with rubber. Most linings are made of natural rubber but can be made of neoprene or butyl rubber. Butyl rubber is best, however, it’s the most expensive. The steel-rubber-lined tanks will last about 20 years.

Safety
While fluoride is an extremely safe compound at the 1 ppm level found in water supplies, the operator may be exposed to much higher levels by handling the chemicals. Therefore the use of safety equipment is strongly recommended when handling fluoride compounds or performing maintenance.

Always wear protective safety gear when handling fluoride chemicals. The following is a list of protective clothing and equipment, which is the minimum recommended for each fluoride chemical. Protective clothing should always be worn whenever sodium fluoride/sodium fluorosilicate is handled and should be stored near the entrance to the area where the sodium fluoride is stored and used. This clothing should not be worn into other parts of the water plant to avoid spreading sodium fluoride dust. Handle bags of sodium fluoride/sodium fluorosilicate carefully. Wash your hands immediately after handling sodium fluoride, the fluoridation equipment, or your protective clothing. Never eat, drink, or smoke in areas where sodium fluoride is stored or used.
FLUORIDE SYSTEM TROUBLESHOOTING

If possible, inspect the equipment in the fluoridation system at least once a day. In the daily inspection, the equipment may be tested to ensure that it cuts on and off properly. At the same time look for signs that the equipment is not operating normally.

A sign that fluoridation equipment is not operating normally may be that there is an unusual sound or a change in a normal sound; an unusual odor or a normal odor that is stronger than usual; more heat than normal given off by any part of the equipment; and/or unusual vibrations, leaks, drips, or puddles.

To recognize these signs of trouble, the operator must know what the equipment is like when it is operating normally. Once the operator knows this, he/she will probably be quick to notice a change in it. Whenever anything seems different—no matter how small a change it may be—pay attention. Don’t think that it will go away. Look for the cause. It may be a sign that something is wrong with the equipment.

The instructions that come with the fluoridation equipment may give information on troubleshooting, that is, finding out what has gone wrong. Some manufacturers have excellent troubleshooting charts, but they may not cover an entire fluoridation system. Also, the state water supply program is a good source for additional information on troubleshooting. The state engineers know a lot about what is likely to go wrong in a system like yours. They should be able to give good practical advice on how to find the cause of malfunctions.

The problems commonly encountered in the operation of a fluoridation system are related to low, high, or variable fluoride readings. Although slight over- or under-feeding fluoride for short periods actually is of no serious consequences, such variations should be investigated, since they may be indications of potential problems of a more serious nature.

When the fluoride concentration determined by analysis is consistently lower than that determined by calculation, a number of problems may be interference in the laboratory test procedure. If alum is used for flocculation, traces of aluminum in the finished water can interfere with colorimetric analysis by influencing the readings negatively. A high iron content can also cause low readings if the SPADNS method is used. In rare cases, chloride and alkalinity can also interfere, but their concentrations have to be extremely high.

A common cause of low readings is underdosing due to inadequate chemical depth in a saturator or incomplete mixing in a dissolving tank. Deposits of undissolved chemical in the dissolving tank of a dry feeder indicate incomplete mixing. This can be due to inadequate baffling or inadequate makeup-water flow rate. As the fluoride is dissolved, a high reading may result. Also, adding 100 pounds of sodium fluoride to a saturator at one time will result in a temporary higher fluoride concentration. Thus, it is better to add 50 pounds at a time.

Low chemical purity is another possible cause of low fluoride readings. Fluorosilicic acid has the most available purity and can be anywhere from 20 to 30% pure. The manufacturer usually specifies the purity of a given batch, but if there is some doubt, the acid should be analyzed according to directions given in the AWWA Standards. Sodium fluoride and sodium
fluorosilicate usually exhibit less variation in purity, but occasionally a relatively impure lot is produced.

If the fluoride level is low in a sample taken from the distribution system, it may be advisable to check for unfluoridated water entering at some point in the distribution system and diluting the water fluoridated at the plant.

If laboratory testing indicates a fluoride concentration consistently higher than that determined by calculation, several problems may be indicated. Polyphosphates can cause analytical error in the positive direction when using the SPADNS method. This type of error can be checked by using the electrode method or comparing results with the local or state health departments. Failure to eliminate chlorine from the water sample can also lead to high results in colorimetric analysis.

Failure to take into account the natural fluoride content of the raw water can result in adding more fluoride than is needed; surface supplies, which can show considerable variability, should be analyzed daily so that the correct dosage can be calculated. If the water supply comes from wells, the variability is much less, but in the case of a higher-than-calculated fluoride concentration, the possibility of a contribution from a high-fluoride well should be investigated.

The most difficult type of problem to solve is that of variable fluoride concentration when calculations show that the fluoride feed rate is of the required proportion. One possibility, however, that can be checked is the fluoride feeder. Verifications of the delivery rate with weight measurements at short intervals will reveal whether the feeder delivery rate is constant.

Almost all of the factors that can produce consistently low or high fluoride analyses can also produce variable errors if the analytical interference, chemical purity, raw water fluoride, or completeness of chemical solution is variable. In the last case, undissolved sodium fluorosilicate can eventually go into solution after a quantity of undissolved material accumulates at some point, and a solution feeder can begin drawing from a concentrated stratum after feeding from a dilute stratum in an improperly mixed solution tank.

One of the causes of varying fluoride content in a treated water system is the intermittent intrusion of unfluoridated water into the system. This situation usually occurs when fluoridation measures are instituted and no attempt has been made to fluoridate the reservoir separately. When no water is being pumped or the pumping rate is less than the demand, water flows into the system from the reservoir and, since this water has not yet been fluoridated, low fluoride readings will result, particularly at the sampling points nearest the reservoir. Eventually, with flow pattern reversals as the pumps operate intermittently, the reservoir contents will become displaced by fluoridated water. However, there have been cases involving large reservoirs, located at the end of a water system, where it has taken years before there was a complete turnover of the reservoir contents. The obvious solution to this type of problem is to fluoridate the reservoir separately at the time fluoridation of the system begins, if possible.

A similar situation occurs when an elevated tank or other storage facility merely rides on the system, and its contents rarely enter the system or at best there is only a slight intermixing. Sampling points near the tank will have varying fluoride concentrations-normal during pumping and low when water is being drawn from the tank. The solution is to allow the tank contents to
drain into the system before fluoridation begins and then not refill the tank until the entire system is up to the optimal fluoride level.

Cyclic fluoride levels can result when the feeder is operated intermittently, such as when capacity is reduced by the use of a cycle timer and when there is insufficient storage capacity between the feeder and the consumers. Detention time in mains or a storage facility between the feed point and the first consumer are important factors in providing homogeneous fluoridated water.

There are undoubtedly many other possible causes for fluoride levels below optimum, but it is certain that fluoride does not disappear in the pipelines, nor is it likely that fluoride will concentrate at points or become leached out of incrustations in the mains. Unlike chlorine, fluoride does not have the ability to dissipate and, even though trace amounts are incorporated into tubercles in pipelines, the extreme insolubility of these formations prevents subsequent dissolution. When there is an unexplained difference between the calculated and observed fluoride concentrations, the calculations are usually at fault. If calculations prove to be accurate and none of the previous possibilities apply or can be eliminated, common sense and knowledge of the individual system should enable the operator to locate and correct the cause of the trouble.
EMERGENCY PROCEDURES FOR FLUORIDE OVERFEED

RECOMMENDED ACTIONS FOR FLUORIDE OVERFEED

<table>
<thead>
<tr>
<th>IF THE FLUORIDE CONTENT (mg/L) IS:</th>
<th>THEN, PERFORM THE FOLLOWING RECOMMENDED ACTIONS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 above the optimum to 2.0</td>
<td>1. Leave the fluoridation system on.</td>
</tr>
<tr>
<td></td>
<td>2. Determine what has malfunctioned and repair it.</td>
</tr>
<tr>
<td>2.0 to 4.0</td>
<td>1. Leave the fluoridation system on.</td>
</tr>
<tr>
<td></td>
<td>2. Determine what has malfunctioned and repair it.</td>
</tr>
<tr>
<td></td>
<td>3. Notify your supervisor</td>
</tr>
<tr>
<td></td>
<td>Name/Phone /_</td>
</tr>
<tr>
<td></td>
<td>and report the incident to the appropriate county or state</td>
</tr>
<tr>
<td></td>
<td>agencies.</td>
</tr>
<tr>
<td></td>
<td>Name/Phone /_</td>
</tr>
<tr>
<td>4.0 to 10.0</td>
<td>1. Determine what has malfunctioned and repair it.</td>
</tr>
<tr>
<td></td>
<td>2. If the problem is not found and corrected quickly, turn off the fluoridation system.</td>
</tr>
<tr>
<td></td>
<td>3. Notify your supervisor</td>
</tr>
<tr>
<td></td>
<td>Name/Phone /_</td>
</tr>
<tr>
<td></td>
<td>and report the incident to the appropriate county or state</td>
</tr>
<tr>
<td></td>
<td>agencies.</td>
</tr>
<tr>
<td></td>
<td>Name/Phone /_</td>
</tr>
<tr>
<td></td>
<td>4. Take water samples at several points in the distribution system and test the fluoride content. (Save the part of the water samples not used.)</td>
</tr>
<tr>
<td></td>
<td>5. Determine what has malfunctioned and repair it. Then, with supervisor's permission, restart the fluoridation system.</td>
</tr>
<tr>
<td>10.0 or higher</td>
<td>1. Turn off the fluoridation system immediately.</td>
</tr>
<tr>
<td></td>
<td>2. Notify your supervisor</td>
</tr>
<tr>
<td></td>
<td>Name/Phone /_</td>
</tr>
<tr>
<td></td>
<td>and report the incident to the appropriate county or state agencies.</td>
</tr>
<tr>
<td></td>
<td>Name/Phone /_</td>
</tr>
<tr>
<td></td>
<td>and follow their instructions.</td>
</tr>
<tr>
<td></td>
<td>3. Take water samples at several points in the distribution system and test the fluoride content. Save the part of the sample for the state lab to test.</td>
</tr>
<tr>
<td></td>
<td>4. Determine what has malfunctioned and repair it. Then, with supervisor's permission, restart the fluoridation system.</td>
</tr>
</tbody>
</table>
PREPARATION OF AN OPERATION & MAINTENANCE PLAN

This plan should be developed by every public water supplier to provide a written source of material that can be easily referred to for guidance in operating a water system. This plan will be a valuable reference tool for the operating personnel because standard operating procedures for the system and guidelines for start-up and emergency situations will beat their fingertips.

The Operation & Maintenance (O&M) Plan will also provide a ready reference for all equipment data which is necessary for performing normal maintenance and for ordering replacement parts and supplies. It will be an organized system for keeping records of the operation of the system. These records are useful for monthly and annual reports, as supporting documentation of proper operation, and to support the need for replacement or upgrading of treatment facilities. It will have detailed instructions for water sampling and testing which are required for compliance with the Safe Drinking Water Act (SDWA) and for routine monitoring of the treatment process for compliance with generally accepted good waterworks procedures.

The plan will contain information regarding start-up and normal operating procedures and emergency operating procedures; descriptions of equipment and facilities; organization responsibilities; names, addresses, and phone numbers of all key personnel; all contractors and suppliers; and state and local officials.

The O & M Plan will become a training manual to provide personnel with a handy source reference while they learn to operate the facilities. The O & M Plan will be used by experienced operating personnel to monitor normal procedures for changes or emergency conditions; as a source for names and phone numbers when emergency notification is required; and as a check of proper maintenance procedures.

How to Develop an Effective O&M Plan

O & M Plans are often prepared by engineers and managers; however, they must be certain that they obtain information from persons actually experienced in plant operation and maintenance. The procedures must be described in terms and language which are readily accepted and understood by the operators. Because of the technical nature of the water treatment process, a basic level of knowledge and understanding by the operators must be assumed. The experienced operator will usually refer to the O & M Plan for confirmation of normal operation and maintenance procedures and as a reference guide for unusual operating conditions. The entry level operator should frequently refer to the O & M Plan for guidance and instruction.

Some water suppliers may have O & M Plans or certain parts of O & M Plans established or their system. These may include Emergency Response Plans, Safety Programs, Water Conservation Programs, Cross-Connection Control Programs, or other formalized procedures. This guidance manual is not intended as a required format which must be followed, but as a presentation of procedures which can be considered for your use in the preparation of your O&M Plan. Plans and programs which have been accepted as good, operating procedures can be directly included in your O & M Plan without rewriting; however, it would be a good idea to review and update your procedures.
Your O & M Plan will be a collection of plans and programs which will probably be stored in loose-leaf notebooks. The appearance of your plan is not as important as the availability of the information to the operating personnel and the ability to revise and update it.
TASTE AND ODOR

Most customers judge the quality of drinking water by taste and odor. If the customer is satisfied with these qualities, it is assumed the water is safe to drink. Many harmful contaminants in water cannot be detected due to taste or smell and many of the contaminants found in drinking water that have a detectable taste or odor are not harmful. Sources of taste and odor problems can be found in surface water and groundwater.

Source water protection involves the prevention of contaminants from entering the source. Surface water or groundwater may become contaminated by pollutants such as gasoline, industrial solvents or a wide variety of volatile organics. The removal of contaminants from surface water or groundwater is costly and may involve the use of aeration, powdered activated carbon, or both.

If taste and odor must be controlled at the treatment plant, oxidation, aeration and adsorption can be effective in reducing taste and odor, and improved coagulation filtration.

Common Odors in Groundwater
Methane gas from the decomposition of organic matter tastes like garlic and the biggest danger from the presence of methane is its explosiveness. It can be removed by aeration.

Hydrogen sulfide (H₂S) in water is a common problem that is therefore discussed separately from the other taste and odor problems. The most common method of removing hydrogen sulfide from water is by aeration. Carbon adsorption is also effective, but more expensive.

Common Odors in Surface Water
Most taste and odors in surface water are organic and derived from algae blooms. Algae growths can be influenced by the pollution from domestic waste, run-off from fertilizer, and animal, domestic, and industrial waste.

Algae are simple forms of plant life that exist in relatively clean water, are widely distributed in nature, and usually present in lakes, ponds, and streams. Most are microscopic in size and vary from single cells to filaments, chains or groups of cells. Their presence normally does not constitute a health risk. There are thousands of types of algae species; however, the most common types that cause taste and odors are:

- Cyanophyceae - These types are responsible for most taste and odor complaints. They are blue-green in color and float at or near the surface of a surface source;
- Diatomaceae - These are one-celled plants reproduce by splitting. The cell walls contain green and brown coloring matter. Dead organisms produce a fishy or geranium odor in the spring and fall; and
- Chlorophyceae - These are one-celled green algae that are mostly free floaters which produce a grassy or fishy odor or taste.

Since algae are aquatic plants, they require the same conditions (sunlight and nutrients) as land plants. Algae analysis has shown that as much as ten percent of the weight is nitrogen and that they contain significant amounts of phosphorus. Nitrogen and phosphorus are important components of fertilizers. The amount of run-off from farms and city lots may be the reason that some bodies of water support heavy algae growths while others do not. Other factors, such as a water surface’s size, shape, and depth also influence the growth of different types of algae.
- Protozoa - These microorganisms belong to the simplest form of animal life and some forms have characteristics from both the animal and plant kingdoms. Odors and tastes caused by protozoa have been described as fishy, aromatic, cucumber-like, or muskmelon-like.

- Schizomycetes - These microorganisms, known as iron and sulfur bacteria, cause hydrogen sulfide to be found in water supplies. They include crenothrix and beggiatoa. Most often found in groundwater supplies, they produce an offensive odor of decaying matter.

- Actinomycetes - Closely allied with microscopic plants, actinomycetes are one-celled, filamentous microorganisms occupying a separate group between fungi and bacteria, but more closely associated with the latter. They account for a large part of the microbial population of soils and bottoms of lakes and rivers. Odors associated with this group have been described as earthy or musty.

Most compounds that pollute surface water are organic. These materials can, under certain conditions, cause persistent difficulties even when present in only trace amounts. Many compounds used in industrial operations can cause problems for the operator even at very low levels. Even small concentrations of these compounds can cause problems. In most cases, the consumer will not be able to identify the exact chemical that is causing the problem, but will instead report a specific type of taste, such as medicinal or metallic. Phenols and related compounds are often the source of the medicinal taste.

The taste of phenols is intensified by the addition of chlorine. Refinery waste from a paper mill can cause a distinctive odor. Hydrocarbons from this waste form an oily film on the water; the waste of a paper mill using the sulfite process will have that characteristic paper-mill smell.

Zinc, copper, and other metals produce characteristic taste in water. Wastes from a metal industry can cause taste, but not odor, problems.

Domestic wastewater contains a mixture of organic material. In wastewater treatment, some of these compounds may be partially oxidized and produce an odor. When wastewater effluent chlorinated to control bacteria, it may develop a chlorine odor from the formation of chlor-organic compounds. Domestic wastewater may also contain a relatively high concentration of nitrogen compounds. During stabilization of nitrogen, ammonia is produced which will produce chloramines when combined with chlorine. These compounds have a very persistent swimming-pool odor.
Taste and odor in drinking water are two of the most widespread causes of customer complaints. Although there are no associated health effects, the extensive public relations difficulties resulting from taste and odor make it important to treat these problems.

Treatment involves the implementation of a taste and odor control program, which should be found at every treatment plant. Under some circumstances, this program may be as simple as routinely monitoring for taste and odor problems and performing preventive maintenance on the system. In other cases, treatment is more complex and can involve special equipment to treat the taste and odor problems.

First consider prevention and testing, which are at the core of the taste and odor control program, followed by the various techniques which can be used for active treatment of taste and odor problems. In any case, an understanding of the causes of taste and odors in water will make treatment more effective.

Taste and odor can enter water in a variety of manners. Surface water sources can become contaminated through algal blooms or through industrial wastes or domestic sewage introducing taste- and odor-causing chemicals into the water. Groundwater supplies can be afflicted with dissolved minerals, such as iron and manganese, which enter the water when it passes through rocks underground. Tastes and odors can also enter either type of water in the raw water transmission system and in the treatment plant due to algal growths, accumulated debris and sludge, or disinfection byproducts. The distribution system can have many of the same causes of taste and odor as previously mentioned, with the addition of problems resulting from cross-connections and low flow zones.

The table below lists some of the chemicals which cause the most common taste and odor problems in water.

<table>
<thead>
<tr>
<th>Chemical cause</th>
<th>Taste/odor</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geosmin</td>
<td>Earthy or grassy odors</td>
<td>Produced by actinomycetes, blue-green algae, and green algae.</td>
</tr>
<tr>
<td>2-Methylisoborneol (MIB)</td>
<td>Musty odor</td>
<td>Produced by actinomycetes and blue-green algae.</td>
</tr>
<tr>
<td>2t, 4c, 7c-decatrienal</td>
<td>Fishy odor</td>
<td>Produced by blue-green algae.</td>
</tr>
<tr>
<td>Chlorine</td>
<td>Bleach, chlorinous, or medicinal taste and odor</td>
<td>Addition of chlorine as a disinfectant.</td>
</tr>
<tr>
<td>Chloramines</td>
<td>Swimming pool, bleach, or geranium odor</td>
<td>Addition of chlorine and ammonia as a disinfectant.</td>
</tr>
<tr>
<td>Aldehydes</td>
<td>Fruity odor</td>
<td>Ozonation of water for disinfection.</td>
</tr>
<tr>
<td>Phenols and Chlorophenols</td>
<td>Pharmaceutical or medicinal taste</td>
<td>Phenols usually originate in industrial waste. Chlorophenols are formed when phenols react with disinfecting chlorine.</td>
</tr>
<tr>
<td></td>
<td>Rusty or metallic taste</td>
<td>Minerals in the ground.</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Iron</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen sulfide</td>
<td>Rotten egg odor</td>
<td>Produced by anaerobic microorganisms in surface water or by sulfates in the ground.</td>
</tr>
<tr>
<td>Methane gas</td>
<td>Garlic taste</td>
<td>Decomposition of organic matter.</td>
</tr>
</tbody>
</table>

Prevention
The best way to treat taste and odor problems is prevention. Algal blooms in reservoirs can be prevented by using copper sulfate while algae growing on walls of the treatment plant basins can be removed through shock treatment with chlorine. Since hydrogen sulfide is produced during anaerobic conditions, preventing these conditions in the reservoir, the distribution system, and in sludge in the sedimentation basin will prevent hydrogen sulfide formation. In the distribution system, periodic flushing and maintaining an adequate chlorine residual will keep the pipes clean and odor free.

Testing
An integral part of any taste and odor control program is testing the water for taste and odor problems. The two methods used for these tests - the Threshold Odor Test and the Flavor Profile Analysis - are far more subjective than the methods used to test other water characteristics since both the Threshold Odor Test and the Flavor Profile Analysis depend on human perception of the taste and odor in the water. However, despite the difficulty of performing the tests objectively, they still provide valuable information which can help the operator determine what is causing the taste or odor problem, how concentrated the problematic chemical is, and how the problem should be treated.

The **Threshold Odor Test** is used to determine the amount of odor found in water. During the procedure, the water being tested is diluted with odor-free water and is smelled. The dilutions continue until no odor can be discerned. The last dilution at which odor is detected determines the **Threshold Odor Number (TON)**, which is a measure of the amount of odor in the water. If several people independently perform the Threshold Odor Test, the averaged TON can be relatively accurate.

While the Threshold Odor Test is used to determine the concentration of odor-causing problems in water, the **Flavor Profile Analysis** can be used to determine which tastes and odors are present in water. This test uses a panel of trained judges who taste the water and list which tastes they can detect. Since the tastes present are described carefully, the Flavor Profile Analysis can be helpful in determining which chemicals are at the root of the problem.

These tests can be performed to find the source of a particular problem or as part of routine monitoring. To find the source of a problem, the water should be tested at various locations, from the source water to the customer's tap. In contrast, routine monitoring can be less intensive but requires good record-keeping. Past records can help the operator predict seasonal variations in taste and odor problems so that he can prevent problems before they reach the customer. Records of past treatment methods can make it much easier to determine which treatment methods will be effective during current outbreaks.
Oxidation

In most cases, oxidation is the best method for controlling taste and odor problems. Oxidation can be carried out with the following chemicals:

- Potassium permanganate, most often used and is a very strong oxidant, a dosage range of 0.1 to 0.5 mg/L can control taste and odor problems.
- Ozone is also effective oxidizing of taste and odor compounds. Ozone changes the characteristics of the taste and odor in addition to reducing the level of the odor-producing compound. Ozone dosages of 2 to 5 mg/L have been used. Several pilot studies have shown that the combination of ozone and hydrogen peroxide may be superior to the use of ozone alone.
- Chlorine dioxide or chlorite are also effective methods of taste and odor control, but use as a control chemical must be evaluated carefully due to the formation of THMs and chlorophenol when organics are present.

Aeration

Aeration is a practical solution for taste and odor control when the problem is caused by volatile compounds, such as hydrogen sulfide. It is generally not the best method for controlling taste and odors that are caused by algae.

Adsorption

Adding powdered activated carbon to water or using of granular activated carbon (GAC) in the water filter can remove taste and odor. Powdered activated carbon (PAC) is the preferred method when the taste and odor is moderate and infrequent.

Two basic types of PAC feed systems are dry storage and dry feeding. If the hourly feed rate is less than 150 pounds, the feed system should be use a solution tank. If the hourly feed rate exceeds 150 pounds, a slurry system should be considered.

The powdered activated carbon dosage will vary from 1 to 50 mg/L. A dosage of 25 mg/L is considered by many industry experts to be the maximum dosage.

Granular activated carbon filters should be considered when moderate-to-severe taste and odor problems exist frequently. GAC is similar to normal filters; however, the bed contact time is very important. The contact time should range from 3-to-10 minutes for purposes of taste and odor control and the filter rate will range from 3 to 6 gpm/ft². When the GAC is exhausted, the total volume of the bed must be replaced with new or regenerated GAC, which can be created by heating and re-burning used GAC to destroy the material it removed.

HYDROGEN SULFIDE REMOVAL

Aeration

Aeration is both practical and effective in removing hydrogen sulfide if the total level of sulfides is less than 3 to 4 mg/L. It is essential to adjust the pH of the water to a level below 7 prior to aeration. Air-to-water flow ratio should be in the range of 80-100: 1 and hydraulic loading for the tray-type aerator should be 7 - 15 gpm/ft².

Chlorination

Chlorine is often used to oxidize hydrogen sulfide in groundwater. Therefore, 8.3 parts of chlorine are required to oxidize one part of hydrogen sulfide. Factors that affect this reaction are temperature, pH, and reaction time.
Potassium Permanganate
Potassium permanganate is a common oxidant that is often used in water treatment processes. As a result, 6.2 parts of potassium permanganate are required to oxidize one part of hydrogen sulfide. pH of the water plays an important role in the oxidation, with pH 6.5 to 7 being optimal.

TASTE AND ODOR REMOVAL FROM DISTRIBUTION
Taste and odors occurring in the distribution system are primarily the result of corrosion of pipe material and/or growth of iron bacteria, such as crenothrix and leptorix, the water main. If the water has high sulfates and is allowed to stand in dead ends, taste and odor problems may be compounded by sulfate-reducing bacteria.

These problems can be rectified only by proper design of the system, such as eliminating dead ends and providing adequate means of flushing the system. Maintenance crews must keep the water lines clean by regularly flushing out deposits and the microorganisms that accumulate within these deposits.

Water treatment plants can also minimize taste and odor problems by maintaining an adequate residual of chlorine to combat the growth of bacteria in the system and by using anti-corrosion measures, either by adjusting the pH of the water or by adding corrosion inhibitors to the finished water.

Disinfection Byproducts
While not a taste and odor problem, disinfection byproducts can sometimes be treated with the same methods used for taste and odor control. As you will remember, disinfection byproducts are by-products of chlorination and include several chemicals groups such as trihalomethanes and haloacetic acids. Since these substances are suspected to cause cancer in humans, their concentrations in drinking water are carefully controlled.

Disinfection byproducts are formed when organic compounds in the water come in contact with chlorine. The organic matter is primarily humic substances, the organic part of the soil which results from the decay of plant matter. Humic substances are more likely to be found in surface water than in groundwater since they can enter water from algae, leaves, bark, wood, or soil.

Treatment methods include prevention of disinfection byproduct formation, removal of disinfection byproducts from treated water, or removal of disinfection byproduct precursors (humic substances) before chlorine is added to the water. The first treatment method - prevention - involves using a disinfectant other than chlorine to treat water. If the equipment for other types of treatment are not already available at the treatment plant, then using an alternative disinfectant is usually the most economical option for disinfection byproduct control.

The methods used to remove disinfection byproducts or disinfection byproducts precursors will be included since the same methods can be used for taste and odor control. If treatment involves removing only disinfection byproducts themselves, it should be realized that more disinfection byproducts can form when the chlorine residual reacts with organics in the distribution system. Therefore, it is most effective to remove the precursors before the disinfection byproducts have a chance to form.

Active Treatment Method
The choice of an active treatment method for taste and odor problems depends on the cause of the problem. In addition, some methods can be used to solve other problems, such as disinfection byproduct formation, which should be factored into the choice of a treatment method. Active treatment may involve optimizing plant processes, using ion exchange units, air stripping, performing chemical or mechanical oxidation, or performing adsorption.

Optimizing Plant Processes
Chlorine smells are one of the most common problems reported by water customers and are also one of the simplest odor problems to treat. Chlorine smells can be dealt with by simply optimizing the chlorine dosage.

If the tastes and odors are associated with color and turbidity or with floating algae, then optimizing the coagulation/flocculation, sedimentation, and filtration processes may take care of the problem. This is often the simplest and most economical treatment method for taste and odor problems since the equipment is already in place. In addition, these typical plant processes can remove disinfection byproduct precursors in many cases if pre-chlorination is not used at the treatment plant.

Ion Exchange
Ion exchange units are not usually used for taste and odor removal but can be used to remove disinfection byproduct precursors if anion exchange resins are used. However, this process can be expensive and creates the problem of waste disposal.

Air Stripping
Volatile compounds can sometimes be removed from water using aerators which strip the compounds from the water. This technique is usually more helpful at controlling odors than tastes, and is very effective at removing hydrogen sulfide. Disinfection byproducts can be removed from water using aeration if the aeration follows chlorination. However, in that type of setup, the operator must be aware that passing air through treated water can add contamination back into the water.

Oxidation
Oxidation is another frequently used method to remove tastes, odors, and disinfection byproduct precursors. Oxidation can be either mechanical (using an aerator) or chemical (by adding chlorine, potassium permanganate, ozone, or chlorine dioxide.) Use of aerators is usually only effective at removing tastes associated with iron and manganese. In other cases, chemicals must be used.

Chlorine is the most widespread chemical used for oxidation of tastes and odors since chlorine is already in use in many treatment plants as a disinfectant. When using chlorine to oxidize taste and odor problems, the dosage of chlorine must be greater than that used for disinfection, a method called **superchlorination**. After superchlorination has removed the taste and odor problems, the excess chlorine must be removed from the water, which can be achieved using granular activated carbon (which will be discussed later.) Chlorination can deal with fishy, grassy, or flowery odors and with iron and hydrogen sulfide. However, chlorination can make some problems worse, especially those caused by phenols. And, of course, chlorination will increase the disinfection byproduct concentration.

Other chemicals used for oxidation include potassium permanganate, chlorine dioxide, and ozone. Potassium permanganate is used to treat organic contaminants while chlorine dioxide
does well against phenolic and algal tastes. Ozone is a very strong oxidant which will treat more problems than chlorine and lacks the objectionable by-products. All of these methods can also be used to remove or modify disinfection byproduct precursors, but with variable efficiency.

Adsorption

The final treatment method is adsorption. Adsorption occurs when Van der Waal's forces pull contaminants out of the water to stick them onto the surface of some other material. This material, known as the adsorbent, has a very large surface area to allow the removal of large amounts of contaminants. Adsorbents use large pores to increase their surface area.

Several different materials can be used as adsorbents in water treatment. The most widespread of these materials is **activated carbon** which is formed when carbon from wood, coal, peat, or nut shells is exposed to heat in the absence of oxygen. The popularity of activated carbon stems from its lack of specificity which allows it to treat many different taste and odor problems. The other two types of adsorbents are activated alumina and synthetic resins, both of which are typically used as filter media. Activated alumina is used to remove excess fluoride from water as well as to remove arsenic and selenium. Synthetic resins are more relevant to this lesson since they can remove disinfection byproducts from water. However, synthetic resins are very costly and their use is still in the developmental stages.

Types of Activated Carbon

Powdered activated carbon, or PAC, is a form of activated carbon with a very small particle size. Treatment involves adding PAC to water, allowing the PAC to interact with contaminants in the water, then removing the PAC by sedimentation or filtration. The feed location of PAC can be at any point prior to filtration. The most common locations are in the flash mixer or flocculator since these pieces of equipment will mix the PAC into the water very well. However, some plants feed PAC just before filtration so that the PAC will form a layer on top of the filter and ensure that all water comes in contact with the activated carbon. Adding PAC just before filtration can cause problems, though, since the small PAC particles can pass through the filters and cause dirty water complaints from customers or can cake filters and result in reduced filter runs.

Regardless of the feed location, PAC can be added to water using either a dry feeder or as a slurry. Dry feeders are most often used in small plants when PAC is fed at intervals in response to periodic taste and odor problems. In contrast, slurries (mixtures of PAC with water) are used in larger plants or when PAC is fed continuously. Since it is difficult to make the PAC mix with water, the mixer should have an overhead spray system.

The effectiveness of PAC in adsorbing tastes and odors depends on adequate mixing, contact time, dosage, and on the cause and concentration of the taste/odor problem. Mixing and contact time are determined by the location at which the PAC is added in the treatment process, so adjustments made by the operator will usually involve only dosage adjustments. The dosage usually ranges from 1 to 15 mg/L but must be much higher, in the range of 100 mg/L or more, when the PAC is being used to remove disinfection byproducts or disinfection byproduct precursors. The operator chooses an appropriate dosage using jar tests and the results from odor and taste tests.
Granular activated carbon, also known as GAC, has a larger particle size than PAC with an associated greater surface area. Like PAC, GAC can remove disinfection byproduct precursors as well as taste and odor compounds. GAC is used as a filter medium, either as a layer in a rapid-sand filter or in a separate filter known as a contactor. When contactors are used, the contactor is placed downstream of the filter so that turbidity won't clog the contactor.

Like filters, contactors must be designed to provide adequate contact time of water with the filter medium. This is done by calculating the empty bed contact time, or EBCT, which is calculated similarly to detention time, as the volume of the filter divided by the flow rate. The calculation is called "empty bed contact time" because the volume taken up by the GAC in the contactor is not taken into account. Empty bed contact time should be about ten minutes.

During operation of a GAC filter or contactor, a variety of factors must be monitored. If the GAC is part of a filter designed to remove particulate matter as well as to adsorb tastes and odors, then the effluent turbidity should be monitored. Similarly, the taste and odor contaminants in the effluent should be monitored to determine whether the GAC is operating properly. The operator should make regular checks for bacteria since microorganisms often grow on GAC filters and result in clogging problems. Finally, head loss must be monitored as it would be for any other filter to determine when the unit needs to be backwashed. Washing a GAC filter involves backwashing with a 50% bed expansion and surface washing.

Although GAC filters can be operated like a rapid sand filter in most ways, backwashing and surface washing are not the only cleaning required for the units. The entire surface of the GAC will eventually become covered with contaminants, just as a softener's resin will become covered with magnesium and calcium ions. A GAC filter can typically operate for months or years before reaching this state, depending on the contaminant levels in the influent water. Once the GAC has reached its adsorption capacity, it must be regenerated using the same heating process used to activate the carbon. In many plants, GAC is simply replaced rather than investing in the equipment required for regeneration.

Choosing a Type of Activated Carbon
GAC and PAC each have advantages and disadvantages. In general, PAC is used more often due to the low initial cost and to the flexibility of dosage which allows the PAC concentration to be adjusted to deal with changing contaminant levels. However, PAC has a high operating cost if used continuously, cannot be regenerated, produces large quantities of sludge, and can break through filters to cause dirty water complaints by the customers. In addition, the dust resulting from the small particles of PAC make handling difficult, as does the flammability of the particles.

GAC becomes a more economical choice in larger systems or where taste and odor must be controlled continuously. Disadvantages of GAC include a high initial cost to buy the filter or contactor, and the tendency of GAC filters to grow bacteria.
PREPARATION OF AN OPERATION & MAINTENANCE PLAN

This plan should be developed by every public water supplier to provide a written source of material that can be easily referred to for guidance in operating a water system. This plan will be a valuable reference tool for the operating personnel because standard operating procedures for the system and guidelines for start-up and emergency situations will beat their fingertips.

The Operation & Maintenance (O&M) Plan will also provide a ready reference for all equipment data which is necessary for performing normal maintenance and for ordering replacement parts and supplies. It will be an organized system for keeping records of the operation of the system. These records are useful for monthly and annual reports, as supporting documentation of proper operation, and to support the need for replacement or upgrading of treatment facilities. It will have detailed instructions for water sampling and testing which are required for compliance with the Safe Drinking Water Act (SDWA) and for routine monitoring of the treatment process for compliance with generally accepted good waterworks procedures.

The plan will contain information regarding start-up and normal operating procedures and emergency operating procedures; descriptions of equipment and facilities; organization responsibilities; names, addresses, and phone numbers of all key personnel; all contractors and suppliers; and state and local officials.

The O&M Plan will become a training manual to provide personnel with a handy source reference while they learn to operate the facilities. The O&M Plan will be used by experienced operating personnel to monitor normal procedures for changes or emergency conditions; as a source for names and phone numbers when emergency notification is required; and as a check of proper maintenance procedures.

How to Develop an Effective O&M Plan

O&M Plans are often prepared by engineers and managers; however, they must be certain that they obtain information from persons actually experienced in plant operation and maintenance. The procedures must be described in terms and language which are readily accepted and understood by the operators. Because of the technical nature of the water treatment process, a basic level of knowledge and understanding by the operators must be assumed. The experienced operator will usually refer to the O&M Plan for confirmation of normal operation and maintenance procedures and as a reference guide for unusual operating conditions. The entry level operator should frequently refer to the O&M Plan for guidance and instruction.

Some water suppliers may have O&M Plans or certain parts of O&M Plans established or their system. These may include Emergency Response Plans, Safety Programs, Water Conservation Programs, Cross-Connection Control Programs, or other formalized procedures. This guidance manual is not intended as a required format which must be followed, but as a presentation of procedures which can be considered for your use in the preparation of your O&M Plan.

Plans and programs which have been accepted as good, operating procedures can be directly included in your O&M Plan without rewriting; however, it would be a good idea to review and update your procedures. Your O&M Plan will be a collection of plans and programs which will probably be stored in loose-leaf notebooks. The appearance of your plan is not as important as the availability of the information to the operating personnel and the ability to revise and update it.
OPERATION & MAINTENANCE PLAN FOR WATER TREATMENT

Treatment of raw water is necessary in all public water systems to prevent the transmission of contaminants to the consumer. The contaminants could be toxic, cause disease, or have other long-term health effects for the consumer. Water also must be treated for aesthetic contaminants (i.e., color, turbidity, taste, odor, and corrosivity) so the consumer continues to have trust in the quality, taste, and odor of the drinking water. Because of this trust, the water supplier and operators have a continuing challenge to provide water of the highest possible quality at a time when there is an ever increasing possibility of contamination. Outlined in this section are typical examples of operations and maintenance procedures for water treatment processes. The water system may use these as guidelines for preparing similar descriptions for inclusion in an Operation and Maintenance (O & M) Plan or may want to develop customized information applicable to a particular process or system.

Chemical Addition and Handling
Chemical addition in the treatment process occurs at several different locations such as "pretreatment" at the head end of the plant; "in process" such as filter aids applied to the filter influent; and "post-treatment" applied to the clearwell. The large variety of chemicals available for water treatment is used for the following purposes: coagulants; pH adjustment; taste and odor control; disinfectants; corrosion control; polymers or filter aids; algae control; softening; and fluoridation. Chemicals also come in a variety of states, such as solid (granular, powder, or flakes), liquid (solutions), and gas. Because of their natures, each must be handled in their own special way. There is a large amount of written material available on this subject so only the more common chemicals and applications will be described. The most important consideration in the addition of a chemical to the treatment process is the determination of the dosage or rate of feed and how the chemical will react with other chemicals used in the process. In addition, it is required that any treatment chemical that come into contact with drinking water must be certified and listed for conformance with the ANSI/NSF Standard 60.

Coagulation Chemicals and pH Adjustment
Coagulation and pH adjustment chemicals - For the purpose of these procedures, these coagulation and pH adjustment processes will be described jointly since they are the foundation of the coagulation/flocculation and sedimentation process. The relationship of pH to floc formation is very important. The most commonly used chemicals for these purposes are aluminum sulphate (alum), either liquid or granular for a coagulant, and calcium hydroxide (hydrated lime) for pH adjustment. The test used to determine the dosage rate for each chemical is the jar test. A jar test is an attempt to duplicate the water treatment processes in glass beakers with varying doses of chemicals so the floc formation and settling can be observed in a laboratory setting.

Many manuals describe the jar test and provide sample forms for recording the test data. From the tests performed, the operator can select what appears to be the most effective combination of chemicals and then can set the chemical feed dosages accordingly. The jar test cannot duplicate exactly the actual plant conditions so the results of those chemical settings must be observed at the effluent of the sedimentation basin and adjustment made accordingly. Jar testing is highly recommended because correct chemical dosage can produce a high-quality water and be a cost-saving factor.

Evaluating Jar Test Results
Visible floc formation should begin shortly after the rapid mix portion of the jar test. During the flocculation mixing, a number of small particles will gradually clump together to form larger particles. Floc particles which are separate and fairly dense in appearance are usually better than floc particles that have a light, fluffy appearance. Large floc is impressive but it is neither necessary nor always desirable. Large, light floc does not settle as well as smaller, denser floc, and it is more subject to shearing (breaking up).

The water between the floc particles should be clear and not hazy or milky in appearance. The best chemical dosage is one which produces a finished water that meets the SDWA standards at the lowest cost. The floc should settle quickly after the mixing has stopped. Floc that remains suspended longer than 15 to 20 minutes would be carried over onto the filter media. The jar tests can be repeated using other combinations of chemicals to produce the best results for turbidity, pH, and alkalinity.

Jar tests are an effective tool for predicting the results of the treatment process and evaluating various combinations of chemical feed and different chemicals. These test results are used to adjust or verify the feed rates in your treatment plant.

A jar test should be run at the beginning of each shift and more frequently when the raw water turbidity is high or changing. There is no substitute for experience in evaluating jar test data. Frequent tests will provide a basis for comparing results of the quality of finished water under different conditions and aid in fine tuning of the chemical feed dose rates. Always verify the effectiveness of a change in treatment based on a jar test result. To verify the jar test results with treatment plant performance, after the changes have been in effect for sufficient time to show results at the rapid mix chamber, collect a sample just down stream from the rapid mix chamber. Mix the sample on the jar test equipment under the same conditions as the original sample (not including the rapid mix simulation). This sample should show similar results to the original test sample and a comparison of these results could be the basis for further fine tuning of the chemical dosage. In addition to jar tests, Zeta potential tests and the use of streaming current detectors also are used to help control the coagulation/flocculation process.

Application of Coagulant Chemicals
The application of the coagulation chemical should be at the rapid mix chamber. Dry chemicals are fed by a dry volumetric feeder which applies the chemical at a constant volume per unit time to a tank or container of water. If necessary, the tank has a small mixer to dissolve the chemical into solution. If the chemical is already in solution (liquid alum), it is pumped into the treatment process by a volumetric pump which pumps a set volume of the liquid per unit of time. Each type of feeder is adjustable for varying rates of feed. The operator should verify the quantity being fed by collecting the output of the feeder for a specific period of time (one minute is normal) and, through weighing or measuring, verify the actual chemical dosage rate.

Taste and Odor Control
The causes of taste and odor problems are many and can show up at any point in the water supply system. Sometimes the effort to treat the water to make it potable destroys microorganisms which release taste and odor compounds. The causes of tastes and odors can range from biological growths (i.e., algae and plankton); environmental conditions (i.e., the depletion of oxygen in certain layers of the lake or reservoir water); the release of organic chemicals by decaying vegetable matter; man's activities (i.e., domestic and industrial wastes);
chemical spills; and agricultural activities (i.e., fertilizers, chemicals, and soil erosion). Within the water system there can be taste and odors due to dead end mains, open reservoirs in which algae grow, septic sludge in settling basins, and the reaction of chlorine to organic materials in the water.

Taste and Odor Control Chemicals

The causes and locations of taste and odor problems are varied, so the chemicals used and the points of application are many and varied. The following list of chemicals includes some commonly used taste and odor controls.

- **Powdered activated carbon (PAC)** is a dusty, messy material to handle and should be converted to a slurry (mixed with water) as early in the process as possible. The dry material is fed by a dry chemical feeder (volumetric) into a tank of water having a mixer, and the slurry then is pumped into the treatment process. Because the carbon is highly combustible, it should be stored away from other chemicals, particularly potassium permanganate (KMnO₄) and HTH (high test hypochlorite). The amounts of activated carbon required have been described as up to 15 mg/L, but there is no specific test to determine the necessary amount. The trial and error method will best determine the quantity. Records of what was done in previous incidents could be used as a guideline. The activated carbon can be applied at the intake or at the rapid mix area of the plant, so there is time to react (adsorb) with the taste and odor causing constituents before it reaches the filters which should remove any remaining carbon from the water.

CAUTION - Do not add chlorine at the same point or upstream from the activated carbon application since the activated carbon will adsorb the chlorine and neutralize the effectiveness of both chemicals.

Activated carbon can be added to the filter influent to establish a layer of the activated carbon on the top of the filter media. The activated carbon, which is very light in weight, is washed away to waste when the filter is backwashed.

- **Granular activated carbon (GAC)** can be used as a filter media in a rapid rate sand filter where it can produce a low turbidity water. It also absorbs organic materials that cause taste and odor problems and is effective in the removal of potentially toxic or carcinogenic trace organics. When used for these purposes, the GAC must be regenerated or replaced periodically. GAC is also used as the media in carbon contactors for the adsorption of volatile organic materials.

- **Potassium permanganate (KMnO₄)** is supplied as dry, purple crystals which are readily dissolved in water. Potassium permanganate, a highly effective oxidizing agent, destroys tastes and odors, and readily oxidizes soluble iron and manganese into insoluble oxides. This chemical always should be applied upstream from filtration preferably at the intake or at the rapid mix basin. Potassium permanganate usually is applied in dosages up to 5 mg/L. Visual control is possible since it turns the water a pink-purple color. The dosage must be low enough so this color does not extend beyond the filters. This chemical comes in dry crystals and can be mixed with water and fed by dripping or by a solution pump.
• The use of prechlorination (the addition of chlorine at a point at or near the raw water intake or in the rapid mix basin) can be an effective taste and odor treatment since it also is a powerful oxidant; however, sometimes this treatment can aggravate and prolong the problem through the formation of other organic compounds. Only experience will teach the operator the correct action to take in each case. Also, the post-chlorination process can intensify the taste and odor producing compounds in the distribution system resulting in complaints from the customer when the taste and odor cannot be detected at the treatment plant. When this happens, chlorine dioxide or a chloramine compound could be used as a post-disinfectant.

• Copper sulfate (CuSO₄·5H₂O) is provided in crystal, lump, and powder form and is an algicide used in raw water supplies to eliminate the growth of algae. There also are liquid solutions available as an algicide which contains copper sulfate. The liquid chemical can be applied by spraying the surfaces of bodies of water. In reservoirs and impoundments, the dry chemical is placed in bags and pulled through the water so the entire surface of the lake, reservoir, or impoundment is covered.

Corrosion Control

Water sometimes is unstable due to low pH, high level of dissolved oxygen, and low alkalinity. This results in chemical reactions causing tuberculation which is the build-up of corroded materials on the inside of the pipes. Buildup reduces the cross sectional area of the pipe and available flow. The roughness of the buildup requires more energy, increasing pumping costs.

The corrosivity in water usually is evidenced by the visual observation of the effects of corrosion on metal pipes when they are excavated for repairs or replacement. Customer complaints of dirty water also is an indication that a corrosive condition exists in the system. Records of customer complaints plotted on a system map can help locate the problems.

Corrosion can cause metals in pipe materials, such as iron, copper and lead, to deteriorate and go into solution. These metals are carried by the water and then consumed by the customer. The iron in the water usually is noticeable in rust stains on clothing. Lead and copper in drinking water is not noticeable to the consumer, but is a serious health hazard when present in elevated levels.

Corrosion in pipes is caused by reactions between the water and the metal in the pipe. This appears as rust and tuberculation (buildup of rust). Some of the factors which affect the rate of corrosion are:

• Temperature - Higher temperatures cause more rapid chemical reactions (i.e., reactions which occur inside hot water tanks);
• Low pH;
• Low alkalinity;
• Velocity - Corrosive water at high velocity causes rapid pipe deterioration but shows little metal pick up. Low velocity with more contact time will have more metal pick up resulting in red water;
• Galvanic corrosion - When two different metals come into contact, there is a chemical reaction which produces a flow of electrons from one metal to the other causing corrosion; and
• Dissolved gases - Oxygen increases the rate of corrosion. Carbon dioxide reduces pH and increases corrosion. Nitrogen tends to lower corrosion rates.
Disinfection
The disinfection of water is the selective destruction of pathogenic organisms. The destruction of all organisms is called sterilization. This is too expensive and not practical in water treatment. The destruction of pathogenic organisms is the destruction of all disease-causing organisms. The Safe Drinking Water Act requirement is to destroy almost all coliform bacteria. The total coliform group merits consideration as an indicator of pollution because these bacteria always are present in the normal intestinal tract of humans and other warm-blooded animals and are eliminated in large numbers in fecal wastes. Thus, the absence of total coliform bacteria is evidence of bacteriologically-safe water.

Disinfection Chemicals
The chemicals commonly used for disinfection are chlorine, calcium hypochlorite, sodium hypochlorite, and sodium chlorite. There are other chemicals (i.e., iodine, bromine, and ozone) which will disinfect water, but are not as commonly used in water treatment.

Chlorine
Chlorine is a greenish-yellow gas which has a very penetrating, acrid odor that burns the eyes and the throat. Chlorine gas is 2 ½ times heavier than air and, therefore, tends to collect in low areas such as pits, basements, and sumps. Chlorine gas is supplied under pressure in 100 or 150 lb. cylinders or in 2000 lb containers. Chlorine also can be delivered by railroad car, but this is not common for water suppliers. The chlorine cylinders must be protected from exposure to heat because a rise in temperature can cause an increase in pressure which could rupture the steel cylinders. The cylinders are equipped with a fusible plug which softens and melts at 158°F to 165°F to prevent the buildup of pressure. Chlorine cylinders must be secured in an upright position to prevent failing over and damaging the valve. Also, the valve should be protected with a protective cap when not in use.

Method of Feeding
The chlorinators used to feed the chlorine are vacuum controlled so the chlorine gas only can be released when a vacuum is present. The chlorine gas then is injected into a stream of water at the injector. The flow of water, through a small orifice in the injector, creates the vacuum which draws the chlorine gas into the stream of water. The solution of chlorine and water then is conveyed to the point of application. A typical chlorinator has a pressure-reducing valve to lessen the pressure, a rate valve and rate meter to control the rate of flow, and a valve which shuts off the supply of chlorine gas when a vacuum is not present.

Determination and Control of Feed Rate
The amount of chlorine applied depends on the point of application and the expected result. For example, the amount of chlorine applied to raw water to control algae growth and prevent tastes and odors can be at relatively high rates because the organic materials in the water react with the chlorine. In this situation, the goal should be to carry a measurable chlorine residual to the filter influent water. This may require the application of chlorine at rates of 3 to 4 mg/L. The amount of chlorine applied to the clearwell should be adequate to maintain a detectable residual of free chlorine in all parts of the distribution system in the recommended amount of 0.2 mg/L.

The rate of feed in a gas chlorinator is controlled by a flow rate adjusting valve and a rate meter which indicates the rate of flow. In some installations there may be chlorine residual monitoring
equipment which automatically paces the rate of feed to maintain a specific chlorine residual at a specified location downstream from the point of application.

Precautions and Abnormal Situations

- Chlorine gas is extremely toxic and can cause death when inhaled. All safety precautions must be observed.
- Exhaust fans must be used to ventilate the chlorine room in the event of a leak. Ideally, fans should push air into the room from the ceiling or a high point on a wall and the exhaust must be from close to floor level. This prevents the chlorine gas from passing over the fan and motor. Chlorine gas is very corrosive and can damage the fan and the motor.
- Self-contained breathing apparatus must be used if there is any suspicion of a leak.
- Chlorine leaks can be checked by using a rag on a stick dipped in ammonia. When passed near the chlorine leak, a white vapor will form.
- When a leak is suspected, always work with a backup person to help you out if you are overcome.
- When a leak cannot be repaired and could become a threat to the area, contact the fire department for help.
- If a chlorine cylinder or container is leaking, call the supplier for help.
- Avoid drawing more than 40 lbs of chlorine per day from any one cylinder. If more chlorine is required, the withdrawal should be from multiple cylinders manifolded together.

Calcium Hypochlorite and Sodium Hypochlorite

Calcium hypochlorite is a dry, white chemical in granular or tablet form. When used for disinfection, it should be mixed in a solution of water and fed by solution pump into the water to be treated.

Sodium hypochlorite is a light yellow liquid which is commonly used as bleach; however, the concentration of sodium hypochlorite used in water treatment is much higher (up to 15 percent). The liquid usually is supplied in five-gallon carboys; however, some smaller systems purchase one-gallon containers.

Method of Feeding

Both calcium hypochlorite and sodium hypochlorite solutions are fed by means of a metered solution pump. The powder or the liquid is diluted with water in a solution crock to a predetermined strength, usually about a one-percent solution.

Determination of Feed Rate

The amount of calcium hypochlorite or sodium hypochlorite applied to the water is determined by the free chlorine residual which is necessary to provide adequate disinfection of the water and maintain a residual in the recommended amount of at least 0.2 mg/L in all parts of the distribution system. Each system should develop criteria to determine the necessary chlorine residual at the point of application. However, the temperature, pH, and any organic substances in the water must be considered when setting application rates.

Precautions and Abnormal Situations

- Calcium hypochlorite is a dry powder which does not fully dissolve in water; therefore, a sediment of undissolved chemicals is present in the bottom of the solution tank. Therefore,
the pump suction line should be kept off the bottom of the tank to prevent this sediment from being drawn into the pump.

- The hypochlorite solutions are very corrosive and should not be in contact with metals.
- The hypochlorite solutions are very strong alkali bleaches which can be a skin irritant. Eyes should be protected from solution splashes or airborne powder (dust).

Fluoridation Chemicals

Fluoride is added to water supplies for the purpose of preventing tooth decay. There are three common fluoridation chemicals -- sodium fluoride, sodium silico fluoride, and hydrofluosilicic acid.

Sodium fluoride and sodium silico fluoride are supplied as a dry, white powder usually in paper bags. The dust from these chemicals can irritate the nose and throat. These chemicals are fed either by dry chemical feeders where they are added to water to form a solution or, in the case of sodium fluoride, it is commonly fed through a saturator where water is passed through a layer of sodium fluoride and the chemical is dissolved into solution. These dry chemicals must be handled carefully when loading the feeders. If emptied too quickly, the airborne fluoride dust levels may become too high.

Hydrofluosilicic acid is a liquid supplied in carboys. Normally the chemical is fed at full strength directly from the carboy; however, if the liquid must be transferred, care must be taken to avoid splashes or spills. The liquid is very corrosive and irritates the skin and eyes. The fumes are pungent and irritating. The carboys should be vented to the outside so the fumes and odors do not accumulate. All storage areas should be well ventilated.

Conventional Filtration Treatment Plant

A conventional filtration treatment plant is used for the treatment of surface water to remove turbidity (particulate matter) and microbiological contamination (bacteria, *Giardia* and *Cryptosporidium*). These treatment plants typically have chemical addition, rapid mix, flocculation, sedimentation, and filters as the flow of the treatment processes. A variation of the conventional filtration treatment plant would be a plant which has a solids contact unit which includes the rapid mix, flocculation, and sedimentation processes in one compact unit. Another variation is the direct filtration treatment plant which may omit sedimentation, add the coagulant chemicals to the raw water, and direct the raw water onto the filters. The operation of this type of plant requires very careful monitoring of the process. The following is a brief description of the operation and maintenance of each of these components.

Rapid Mixing

Rapid mixing is the initial high speed agitation of the water to ensure a quick dispersion of the chemicals in the processed water. This action causes the chemical to be distributed uniformly throughout the water. This process usually is located immediately preceding the flocculation or coagulation basin and immediately following the addition of chemicals. There usually are two parallel mixing units, each mounted over a relatively small square chamber having a maximum detention time of 30 seconds. It is desirable for the water to rapidly come into complete contact with the chemicals so the chemical reactions begin; however, it is not desirable that any settling of chemicals or materials occur in these chambers. Although there are static rapid mixers, the most common are electric driven motors having a long vertical shaft with a propeller extending into the water flowing through the chamber.
Start-up
Start-up of the rapid mixers coincides with the start of flow through the plant and the start of chemical additions. A pre-start check should determine:

- Does the shaft turn freely?
- Is any lubrication required?
- Are there any unsafe conditions (e.g., exposed wires)?

Normal Operating Conditions
Rapid mixing is a continuous process which requires no controls or monitoring.

Monitoring
Visual monitoring of the rapid mixing units will provide an indication that they are operating and are effective. If they are operating correctly, there will be an obvious turbulence to the water.

Records
There are no specific records of operation for the rapid mixing units except the records of maintenance and repairs performed.

Maintenance
Maintenance of the rapid mixing units consists of lubrication in accordance with the manufacturer's recommendations and a periodic check of the mixing chambers for a buildup of chemicals on the walls and bottom. The removal of any buildup should be made before it hinders the operation of the mixers or changes the characteristics of the flow.

Coagulation / Flocculation
Coagulation is the effect of chemicals added to the raw water reacting with the particulate impurities, especially lightweight particles, to form a floc. A floc is the accumulation of the chemicals and the particulate matter to form small jelly-like particles which look like snowflakes in the water. As these pieces of floc clump together and combine with more particulate matter, they grow into larger and heavier floc which will settle out. The coagulation process is a very complex chemical and physical reaction which depends on many factors, such as pH, alkalinity, turbidity, temperature, and hardness. It also depends on the chemicals and dosages of chemicals used for coagulation and the physical treatment of the water, such as rapid mixing, flocculation, and baffles used for rapid and slow agitation of the water to cause collisions between the chemicals (floc) and the particulate matter.

Flocculation units may be of many configurations (i.e., horizontal paddle wheels, vertical paddle wheels, vertical turbines, vertical propellers, etc.). Each configuration should be carefully designed to provide satisfactory performance. The vertical configuration usually requires less maintenance since it eliminates submerged bearings and drive mechanisms. Some flocculation can be caused by the turbulence resulting from baffles and orifices. There usually are two parallel systems of coagulation/flocculation units in a treatment plant to facilitate removing one half of the basins from service for maintenance. The best flocculation usually is achieved by more than one unit in a series. Each unit is separated by baffles to prevent short circuiting. Also, all inlets and outlets are baffled to prevent short circuiting. The flocculators usually are driven by variable speed drive units. With multiple units, it is desirable to reduce the speed of the flocculators in each succeeding unit to prevent breaking up the large floc particles which have formed. The flocculators should have a detention time of 30 minutes.
Start-up
The flocculation units should be started approximately at the same time as the start-up of chemical addition and rapid mixing. Prior to start-up, the drive units should be visually checked for any damage such as loose wires or anything which would prevent the normal operation of the unit. During the winter, ice can prevent the rotation of the paddles, or ice cakes can damage the paddles or blades. The operation of the flocculators is not directly interdependent on the operation of the upstream or downstream processes. Under unusual conditions, for a short period of time the treatment plant may continue to be operated with the flocculation units out of service, however, probably at a reduced flow rate. Under these conditions, careful attention to the chemical addition and the quality of water at the end of the sedimentation basins is necessary.

Normal Operating Procedures
Under normal operating procedures, the flocculation units operate at speeds which have been established by either the manufacturer or the engineer. The speed should not be varied without careful consultation with the engineer. In the event the flocculation units appear to be ineffective, a careful analysis of the process should be done using jar tests, varying both the doses of chemicals and the speed of the flocculators to determine if an improved process could be developed. Any analysis such as this should be carefully documented.

Monitoring
The flocculation units are monitored through visual observation of the formation of the floc as it passes through the units. The floc formation should be easily detectable with the naked eye. At the inlet to the flocculation units, the floc will be very fine and have a light sparkling appearance. As the heavier floc is formed, the particles will be larger and look like snowflakes. At times, a gradual change to a darker color can be noticed. It is good practice to periodically dip a small sample of water from different points in the treatment process into a glass jar or beaker to observe the formation of the floc. Experience in observing the appearance of the floc at various stages of treatment will be beneficial in evaluating the effectiveness of the treatment process.

Records
There normally are no separate records kept for the flocculator units except for routine and major maintenance which is recorded in the maintenance records.

Maintenance
The maintenance of the flocculation drive units usually is lubrication of the motor and drive units according to the manufacturer's recommendations. Horizontal paddles usually have submerged bearings, drive chains, or packing which requires additional checking and maintenance. Care should be taken during the winter to prevent damage from ice and slush. The flocculation basins should be drained approximately every six months to check the condition of the paddles or blades, to remove any accumulation of settled material, and to check on the condition of the basin's structure.

Sedimentation
Sedimentation is the slow, quiet settling of the floc and suspended matter from the water by gravity. The sedimentation basins can be rectangular or circular in shape. There should be at least duplicate units to facilitate cleaning. The basins should have a detention time of 4 hours. The inlet devices should be designed to distribute the water for uniform velocities and care should be taken to prevent short circuiting of flows. The outlet devices also must be designed for
uniform flow and to prevent short circuiting. The outlet devices should be submerged orifices. There should be surface skimming to collect floating debris, such as leaves, scum, etc.

There are many variations and accessories which may be designed into a sedimentation unit, such as sludge collection and removal, tube settlers, submerged baffles, and launders which provide both skimming and effluent troughs. Circular units may be called clarifiers and usually have some type of rotating sludge rakes which convey the sludge to a sump where it can be drawn off.

Tube settlers are a variation which were developed to increase the settling efficiency of rectangular basins and have been used in circular basins. The water enters the slanted tubes and is forced to flow upward. The suspended solids strike the walls of the tubes, lose their forward velocity, and tend to settle downward along the tube walls. Tube settlers can be added to existing sedimentation basins and solids contact tanks to increase the capacity of these units, or tube settlers can be installed in new facilities to provide a higher capacity in a smaller area at less cost.

Start-up
The start-up procedures for the sedimentation basins usually occur simultaneously and automatically with the start-up of the upstream units. The drive motors for sludge collection equipment also should be turned on at that time. There is no critical requirement that the sludge collection equipment be started immediately since the sedimentation process is very slow.

Normal Operating Procedures
There are no normal operating control procedures for the sedimentation basin except the speed of the sludge collection equipment which should be set according to the manufacturer's recommendations.

Monitoring
The monitoring of the operation of the sedimentation basin is by visual observation of the water entering and leaving the basin. By dipping some of the effluent water into a clear glass container, such as a beaker, and holding it up to the light, the operator should be able to observe a very light suspended floc. The water between the floc should be reasonably clear. It is normal for some of the very light floc to be carried onto the filter beds since this aids the filtration process.

Records
The only records of sedimentation basin operation are either the amount of time since the last basin cleaning or where mechanical sludge removal equipment is used, a record of the withdrawals of sludge, estimated quantities and percent of settled solid. The operator should check periodically for the accumulation of sludge.

Maintenance
Routine maintenance applies only to the sludge collection equipment which should be lubricated according to the manufacturer's recommendations. When the basins are drained for cleaning, the condition of the basins and the sludge collection equipment should be checked carefully.

Solids Contact Units
Solids contact units combine the coagulation, flocculation, and sedimentation functions together with recycling of solids for more efficient clarification of the water. The operation of solids
contact units requires a good understanding of the operating processes which continuously are interacting within the unit. The mixing zone usually is very small in size and is similar to rapid mixing. The reaction zone is similar to flocculation and the separation zone is similar to sedimentation, except the water is forced down through the reaction zone and flows up through the separation zone. This requires the water to flow through an area which has a heavy accumulation of sludge. Thus, the incoming water comes in contact with the sludge.

The solids contact units have several advantages, such as the all-in-one unit which takes up less space and costs less to construct. The disadvantages are the solids contact units require the operator to have greater technical ability; require closer monitoring; are not suited to operations where the turbidities and solids are subject to large and rapid changes; and are not suited to non continuous operations and temperature changes.

Solids contact units usually are circular in shape. There should be two or more parallel units. The units should be equipped with sampling taps to permit sampling from each zone and at various levels in the separation zone. The flocculation equipment shall have an adjustable drive unit. Detention time should be 2 to 4 hours. Solids contact units should be equipped with sludge collecting equipment and have the piping for periodic sludge withdrawal. The operator should be able to sample the sludge being withdrawn. The effluent shall flow over overflow weirs or through orifices to prevent short circuiting and nonuniform flows.

Start-up
Solids contact units work best when they are operated continuously and have a buildup of sludge available to aid the process. Therefore, all start-up operations shall be at a reduced flow rate until an adequate volume of sludge is present. Prior to starting the operation of the flocculation and sludge collecting, equipment should be checked. The start-up of the solids contact units should coincide with the start-up of the chemical feed equipment.

Normal Operating Procedure
The operation of the solids contact units is sensitive to rapid changes in the pH, alkalinity, turbidity, solids, temperature in the raw water, and flow rates. Changes in the above factors can affect the formation of floc, the settleability of the solids, and the maintenance of a sludge zone. The negative effects can be the carry-over of turbid water to the filters or the breakup of the sludge zone carrying large pieces and quantities of sludge on to the filters.

The operation can be controlled by applying the proper chemical dosage for each condition. The operation also is controlled over a longer period of time by controlling the amount of sludge and the recirculation of sludge. These conditions can be observed by checking the volume of sludge present in a sample from the sludge withdrawal piping and a sample from the flocculation zone. After these samples set for 5 to 10 minutes, the sludge volume can be visually observed and should be from five to twenty percent in the flocculation zone, and over 90% in the sludge withdrawal piping.

Monitoring
Visual monitoring of the solids contact units effluent water will provide a good indication of its effectiveness. By placing a sample of the effluent into a clear glass container and holding it up to the light, the operator should be able to observe a very light floc and the water should be reasonably clear. The appearance of heavy floc, turbid, cloudy, or large clumps of solids
indicates the process is not in proper balance. The operator should perform a jar test to determine the proper chemical dosage.

Records
By checking the volumes of sludge present in the samples drawn from the sample taps, the operator can determine the level of sludge in the unit and the concentration present. Through experience the operator will learn the proper amount, level, and concentration of sludge for the best operation. The manufacturer's recommendations should be used as guidelines; however, the operator can, by keeping records and through experience, determine the best levels and concentrations of sludge for a particular raw water condition.

Maintenance
Maintenance of a solids contact unit consists of routine lubrication of the drive units for the sludge collection and recirculation units. The solids contact units usually are drained once a year to check the condition of the sludge collection equipment and the structure. When the units are drained, they should be cleaned of all sludge so that all parts of the sludge collecting equipment and the structure can be observed. Long-term maintenance can consist of repainting steel components, and patching and sealing the concrete structures. The repair of baffles, launders, sludge piping, valves, and sludge pumps can be done at this time.

Filtration
Filtration is the final barrier preventing particulate matter from entering the system. Filtration is the removal of floc and fine suspended particles from the water after it has passed through the sedimentation basins or solids contact units. The filtration process is the passing of the water through a bed of fine material, such as sand, coal, or other fine granular material. The filter media can be uniform in sizing, but higher and more effective filter rates are attained by use of mixed media. The filter process sometimes is described as straining, but the light floc carried on to the filter material from the sedimentation basins adheres to the grains of the filter media and this coating penetrates into the filter bed. This coating on the filter media attracts the suspended particulate matter which enhances the filtered water quality. This coating continues to build on the filter media and attracts more of the floc and suspended particulate matter.

As this coating builds and penetrates into the filter bed, the head loss across the filter becomes greater until the flow rate is greatly reduced. At this time the filter must be backwashed to cleanse the media of the floc and particulate matter. There are several types of filters, such as direct, slow sand, pressure, diatomaceous earth and rapid rate gravity. Rapid rate gravity filters are the most commonly used and will be used for these procedures.

Start-up Procedures
If the filter has been drained, it should be filled slowly so the media are not disrupted. The filter should be filled through the backwash valve so it is filled from the bottom up, thus forcing most of the air out of the media. Fill the filter until the water level is above the washwater troughs. Any filter which has been out of service for more than a few hours always should be backwashed before being put into service again, because there is a good possibility that many bacteria will have grown in the filter media.

Backwash filter as follows (general outline):
- Check all filter valves to be sure they are closed;
- Close the influent valve;
• Filter until the water is lowered to 6 inches above the surface of the media;
• Close the effluent valve;
• Open drain to waste valve;
• Start backwash pump or turn on source of water for backwash, slowly open the backwash valve until it comes up to the specified rate of flow;
• Start surface wash pump or turn on source of water for surface wash, slowly open surface wash valve;
• The backwash should be run until the desired clarity (desired turbidity and/or particle count) is obtained in the backwash water;
• Use a high pressure hose to wash down the walls of the filters and all other exposed surfaces since the silt particles will adhere to these surfaces. The high pressure hose should be equipped with a backflow preventer to prevent any possibility of a cross-connection;
• The surface wash should be operated for the necessary period of time, but the backwash water should be run at least two or more minutes after the surface wash is shut off;
• Close the backwash valve slowly to prevent water hammer;
• Close drain valve; Open influent valve slowly and allow water to come up to proper level;
• Open filter to waste valve. This flushes any loose sediment left from the backwashing of media, the underdrains and the effluent piping. At the end of the backwash, the filter media are left unconsolidated and the floc coating has been washed off the media. The filter must be filtered to waste until the bed settles in and the effluent water meets the requirements of the Safe Drinking Water Act. If there is no filter-to-waste capability, the bed should be left out of service for 30 to 60 minutes to let the media settle and consolidate. When filtering is first started, it should be at a very reduced rate of flow for the first 30 minutes to an hour and the turbidity should be carefully monitored. In this first hour of filter operation, there is great potential for a turbidity breakthrough which means particulate matter and bacteria can pass through to the clearwell;
• Close filter to waste valve and then open effluent valve.
• Record date, time, and headloss before and after backwash; record number of hours of operation since last backwash, quantity of backwash water used, and quantity of surface wash water used;
• Check rate-of-flow controller for proper operation and adjust flow rate of water onto filter. The filter should be eased into service at a reduced rate of filtration. When the filter is very clean, there can be a turbidity breakthrough until the media again become coated with the light floc. A careful observation of the turbidity monitor will indicate the proper rate of filtration;
• Monitoring of the filter effluent must comply with the requirements of the Long Term 1 Enhanced Surface Water Treatment Rule (LT1ESWTR).

Normal Operating Procedures
The three controlling factors for normal filter operation are: (1) flow rate, (2) head loss, and (3) turbidity of the effluent. A recording or indicating gauge should be provided for each of these factors and the operator should make frequent observations.

• Flow Rate - A flow rate controller limits the maximum rate of filtration by restricting the flow to a predetermined rate through the effluent pipe when the filter is very clean immediately after backwashing. As the filter media become progressively clogged, the loss of head across the filter increases and the rate of filtration gradually declines, and the low rate controller gradually opens to maintain the predetermined rate. Careful observation of the flow rate will predict the need for backwashing the filter.
• Head Loss - The loss of head gauges measures the loss of head (resistance to flow) across the filter. This is the difference in pressure (water level) on top of the filter and the pressure on the filter effluent piping between the filter and the rate of flow controller. This pressure can be best illustrated by the height of water in a clear glass or plastic tube tapped into the effluent piping. The loss of head across a filter is an indication of the filter's condition, for example:
 o Immediately after backwash, the headloss should be nearly zero;
 o When the head loss is approximately seven to ten feet, the filter may develop a negative pressure in the filter media, causing turbidity breakthrough. When this occurs, the filter must be taken out of service; and
 o A sudden increase in headloss can indicate filter clogging caused by a change in raw water conditions.

• Turbidity - At the end of a backwash, the filter is left unconsolidated and the floc coating has been washed off the media. The filter must be filtered to waste or left out of service for 30 to 60 minutes until the filter media consolidate and the turbidity level is below the allowable level. When there is no filter to waste capability, the filter when first started should gradually be eased back on line to prevent turbidity breakthrough. Otherwise, water with higher turbidities will be passed to the clear well. Filtration is the final barrier preventing particulate matter from entering the system.

From a water quality standpoint, the turbidity of the filter effluent will provide the operator with one of the best indications of the effectiveness of the overall treatment process. When the turbidity approaches the maximum allowable level, the filter must be removed from service and backwashed.

Monitoring of Filters
The visual monitoring of the filter operation includes the observation of the flow rate, headloss, and turbidity of the effluent for each filter. These factors can provide the operator with an accurate evaluation of the filter's condition and will indicate the corrective action to be initiated. For example, the filter should be backwashed when the flow rate decreases, the turbidity increases, and the headloss increases. If these changes happen in a relatively short period of time, the operator should check the filter influent since it may contain large amounts of floc. This would indicate the raw water conditions have changed and the chemical feed rates should be adjusted. If the turbidity increases but the headloss and flowrate do not increase, the operator should check the filter influent which may be cloudy and turbid. This also would require a change in the chemical feed rates. Any changes in chemical feed rates should be determined and verified by use of the jar test.

During the backwash procedure, the operator has a chance to observe a number of factors which will indicate the condition of the filter media. By allowing the water to drain down to the level of the media before starting the backwash, the operator can observe if the media are relatively level and does not have cracking or shrinkage away from walls. If the media are not relatively level, turbulent inflow of water may be the reason. These are all indications of mudballs or deep clogging of the bed. Proper backwashing at slightly higher rates and the use of the surface wash will help alleviate this problem. If the filter is not equipped with a surface wash, manual raking during the backwash will help dislodge the mudballs. There should be no spots boiling up when the backwash begins; however, if there are, this indicates the filter media are not uniformly distributed. If this cannot be corrected by intensive backwash, the media may have to be removed and regraded.
Air binding or entrapment can occur if the head loss limits are exceeded or when dissolved air in cold water is released due to a decrease in pressure. The entrapped air will cause increased head loss and will shorten filter runs. If air entrapment is suspected, the filter should be backwashed slowly at first, since the air can disrupt the uniformity of the filter media and cause media to be carried out of the filter.

If excessive head losses are indicated immediately after backwashing, the underdrain system may be clogged or fouled due to corrosion or chemical deposits. This condition would require the removal of the media to expose the underdrains. If the underdrains are clogged, they must be removed and cleaned or replaced.

Excessive head loss, flow rate, and turbidity readings always should be verified by calibration before any extensive corrective action is taken.

Records of Operation for Filters
Record keeping of the operation of the treatment plant and the filters is very important because it establishes a history of what was done and how various components reacted. This history is necessary for compiling data for reports to OEHS, for engineers to design replacement or expansion of the treatment units, and for determining actions to take during unusual or emergency situations.

Listed below are types of records to be maintained.
- Water produced;
- Amount of wash water used;
- Volume of surface wash used;
- Number of filter units in service;
- The length of filter runs between washing;
- Turbidity and head loss - Continuous recording as required by the regulations; and
- Process equipment performances; notes on equipment out of service; maintenance performed; equipment calibration; and accidents or unusual occurrences.

Maintenance
- The filter control valves should be checked routinely for proper operation and any leakage.
- The instruments used to check the filter operation, headloss gauge, flowrate controller, particle counter and turbidimeter would be calibrated on a frequent and regular basis.
- The filter media should be examined annually to evaluate its overall condition. Is the media uniformly graded and distributed? Is there the proper depth of each gradation of media? Expose the underdrain system to check if the holes or nozzles are clogged.
- The backwash and surface wash pumps should be checked and lubricated according to the manufacturer's recommendations.
- The surface wash equipment, including nozzles, should be checked periodically for free operation and proper position over the media.

Other Types of Filters
Pressure Filtration - Pressure filters can have sand, dual media, and mixed media. These filters are similar to rapid rate gravity filters, except they are completely enclosed in a pressure rated
vessel. These filters usually are used only on small installations; however, several may be installed in parallel. These filters have the same operation and problems as gravity filters except the filter media cannot be readily observed.

Diatomaceous Earth Filtration - Diatomaceous earth is a very fine silica earth used as the filter media. A slurry of the filter medium is added to the water which then collects on the filter surfaces which are porous pipes or screens. After the coating is applied, water is filtered through the precoated surfaces. The coating may be supplemented during the filtration process by feeding small amounts of the filter medium with the water. These filters most often are used in industrial applications and swimming pools.

Slow Sand Filtration - The water is applied to the surface of the filter and is drawn through the sand medium by gravity. The sand medium shall be at least 30 inches deep and supported by a gravel bed. The rate of filtration shall be 45 to 150 gallons per day per square foot of sand area. In a rapid sand filter, the particulate matter and the bacteria are formed into floc by the addition of chemicals. Then the floc is strained from the water by the filter media. In the slow sand filter the particles are removed by straining, adsorption, and biological action which occurs in the top two inches of the sand. This layer is called a Schmutzdecke and is necessary for the filtering action to be effective. When the Schmutzdecke becomes too thick, it must be removed by scraping the top 6 inches off the filter. The sand is washed and replaced when the sand depth is reduced to 2 feet. These filters require rather large areas and must be filtered to waste until the Schmutzdecke is developed. These are effective only on very low turbidity waters and have filter runs up to several months.

Direct Filtration - Direct filtration normally is used only on very low turbidity water (preferably not more than 10 NTU). The raw water is treated with coagulant chemicals and a coagulant aid (polymer) passes through a rapid mix chamber or in-line mixing to quickly form a floc. The water then flows directly onto the filters, which are usually multimedia designed specifically for this type of treatment. This treatment process requires careful monitoring to assure that the turbidity standard is not exceeded.

Disinfection
The water supplier must deliver a product which is free of disease-causing organisms. Disinfection destroys disease-causing organisms, also called pathogenic organisms. Through the use of good water treatment practices and, more particularly, the disinfection of water with chlorine, outbreaks of serious diseases such as typhoid and cholera are very infrequent in the United States. The application of a disinfectant as a final treatment process is the typical practice; however, the disinfectant can be applied at other points in the treatment process. It is not unusual to apply additional disinfection at points in the distribution system or at distribution storage facilities, when necessary.

Water can be disinfected by heat, radiation, or chemical treatment; however, the only widely accepted method is chemical treatment. The reason chemical treatment is so widely accepted is that the chemical is applied in amounts which, after completion of the disinfection, leave a chemical residual which would be available for further disinfection of the water if necessary. The ability to detect this chemical residual, by means of a simple test at any point in the distribution system, is an assurance that the water is free of pathogenic organisms. Only the more commonly used chemicals will be described in this chapter. Other methods of disinfection in
approved use, now or in the future, may be described by the water system and used in their O & M Plan.

Chlorination
Chlorination is the process of applying chlorine (Cl₂) to water (H₂O) to form Hypochlorous acid (HOCl) which is a free chlorine residual. This chlorine residual reacts with impurities in the water including the pathogenic organisms. As the chlorine reacts with the impurities, it is changed to chloramines and chloroorganic compounds which have a lower potency than the free chlorine residual. The free chlorine will continue to react with the impurities in the water, such as organic materials and organisms, until all the impurities and organisms are destroyed and there is an excess of free chlorine. It is important to recognize that the combination of sufficient free chlorine residual and adequate contact time are essential for effective killing of the pathogenic organisms.

Other critical factors which can affect the disinfection process are:

- Injection point and method of mixing to achieve total contact with water being disinfected;
- Contact time - The longer the contact time, the more effective the disinfection;
- Effectiveness of other upstream treatment processes; (e.g., the lower the turbidity, the better the disinfection because there is less interference from other substances);
- Temperature - The higher the temperature, the more rapid the rate of disinfection and also the more rapid the depletion of the free chlorine residual;
- The dosage and type of chemical - Usually the higher the dosage, the quicker the disinfection. The form of the chemical such as chloramines or free chlorine residual also affects the disinfection rate;
- The pH - The lower the pH, the more effective the disinfection;
- The free chlorine residual - There must be a detectable residual of total chlorine residual (in the recommended amount of at least 0.2 mg/L) in all parts of the distribution system. The regrowth of organisms can occur in the distribution system depleting the free chlorine residual; and
- Higher free chlorine residuals - Systems may increase residual disinfectant levels in the distribution system of chlorine or chloramines (but not chlorine dioxide) to a level to exceed MRDL for a period of time necessary to protect public health, to address specific microbiological contamination problems caused by circumstances such as, but not limited to, distribution line breaks, storm run-off events, source water contamination events, or cross-connection events.

Organics found in the water can consume great amounts of disinfectants while forming unwanted compounds. The reaction of chlorine with certain organic precursors can form trihalomethanes such as chloroform. These trihalomethanes are known to cause cancer.

Prechlorination of raw water containing organic precursors is more likely to form trihalomethanes than post-chlorination because the coagulation/filtration process will remove most of the organic precursors. As the maximum contaminant level (MCL) for the trihalomethane compounds is lowered by regulations, the water system will have to consider alternate methods of disinfecting the water. The points of application of chlorine, for example, can be moved from prechlorination to post-chlorination and alternate chemicals can be used for pretreatment of the raw water such as chlorine dioxide or potassium permanganate.
Start-up
The application of chlorine should be started as soon as the flow of water through the plant begins. It is important that the chlorine have as much contact time with the water as possible. If a plant has been shut down for a period of time, the chlorine residual in the plant effluent water should be checked and, if necessary, additional chlorine should be added and plant start-up should be delayed at least 20 minutes to allow for adequate contact time before the water is available to the consumer.

Normal Operations
Normal operations of the chlorination equipment is continuous when water is being produced. Chlorine normally is applied to the water at the inlet to the clearwell or at a point which is farthest from the outlet of the clearwell. The clearwell should have baffles to prevent short circuiting of the treatment. The operator should have sufficient chlorine available so containers can be changed or, in the case of liquid solutions, be refilled before there is any interruption in the treatment. Normal operations should include all safety precautions to prevent injury to the operator or the public.

Monitoring
The testing for chlorine residual should be performed, as a minimum, on a daily basis at very simple unmanned facilities such as wells. The chlorine residual in the remote sections of the distribution system should be tested on a daily basis. In more complex treatment systems where the water quality is subject to frequent changes, the testing should be performed more frequently; in some cases, chlorine residual monitoring and recording equipment and paced feed rates are necessary.

The chlorine residual at the effluent of the treatment facility should be compared with the chlorine residual in the distribution system. The chlorine feed rate should be adjusted to maintain a detectable residual of total chlorine residual (in the recommended amount of at least 0.2 mg/L) in all parts of the distribution system. Many distribution systems which are large and spread out may have installed additional chlorination facilities to maintain a detectable residual of total chlorine residual, in the recommended amount of at least 0.2 mg/L, throughout the system. These chlorination facilities must be monitored daily for proper operation and rate of feed.

Records
It is important to maintain records of the operation of the treatment facilities to provide assurance that the water is meeting the requirements of the Safe Drinking Water Act at all times. The results of tests for chlorine residual, both at the treatment facilities and in the distribution system, are the best evidence of meeting this requirement. The water supplier should develop a form for recording these results.

Maintenance
Chlorination usually is accomplished by either gas chlorinators, hypochlorinators or chlorine dioxide generators.

Gas Chlorinators
On a daily basis chlorinators should be inspected for proper operation and leaks. The items to be checked should include injector water supply pressure, injector vacuum, chlorine supply pressure (after the pressure regulating valve), feed rate on rotometer tube. The chlorine residual should be checked and recorded. The weight of the chlorine cylinders should be recorded (check to see that
the change in weight corresponds with the feed rate on the rotometer). Determine when the cylinder is approaching empty, when full cylinders are available, and when cylinders must be changed.

If an automatic chlorine residual analyzer (which adjusts the feed rate as the flow rate changes) is in use, check the actual chlorine residual, sample water flow, and add reagents if required. Change recording chart if necessary.

On a weekly basis check chlorinator feed rates through the full range of its capacity, clean any filters, and check operation of all valves. If automatic equipment is in use, check the operation through the full range of its capabilities, clean filters, clean water sample line, clean all dilution wells and baffles, fill buffer reservoirs, check sample and buffer feed pumps for proper operation, and generally clean all equipment hoses and reservoirs.

On a monthly basis, exercise all chlorine valves, inspect ventilation, heating, and lighting equipment for proper operation. Check the chlorinator vent line for obstructions such as insect nests, inspect the vacuum system for leaks, and perform other maintenance according to the manufacturer's recommendations. The automatic chlorine analyzer should be maintained according to the manufacturer's recommendations regarding lubrication, cleaning, and calibration.

Inspect all safety equipment for proper operation including chlorine alarm system and the self-contained breathing apparatus or gas masks. Some abnormal operating conditions which could occur are:

- **Chlorine leak** - A chlorine leak is usually detectable by your sense of smell as soon as you arrive at the chlorination location. If a chlorine leak is suspected, do not enter the building or chlorine room without having a backup person with you and without the use of a gas mask or respiratory equipment. Use the ventilator fan to air out the chlorinator room as much as possible. Upon entering the room, turn off the valve at the chlorine cylinder or container first. Allow the chlorinator ejector to continue to operate to clear the chlorine out of the lines.

If the leak is in the piping, equipment, or valves, repair the leak and return the system to service. If the leakage cannot be stopped by shutting off the chlorine cylinder or container valve, it will be necessary to install an emergency kit on the cylinder or container. The supplier of the cylinder or container should be notified in order to provide help in installing these kits.

- **Low gas pressure** - If the chlorine gas pressure drops, it usually is the result of the chlorine container being empty, clogged filters, or closed valves. To correct, replace the container, clean the filters, and check the valves.

- **Injector vacuum too low** - If the injector vacuum drops too low, the chlorinator should automatically shut off. The cause of the vacuum being low is a leak in the vacuum hoses, low water pressure, or clogged ejector.

If there is a vacuum leak, repair the leak. If there is low water pressure, check the source, pump operation, or line strainers. If the ejector is clogged, remove and clean it.

If the above does not correct the problem, check the solution line downstream from the ejector for any restriction such as a collapsed line, partially-closed valve, or a clogged diffuser.
Hypochlorinators
Hypochlorinator systems usually consist of a solution tank for the hypochlorite solution and a diaphragm-type metered solution pump. The items to be checked include the level of solution in the tank, the strainer on the solution suction line, the diaphragm pump, and the discharge line. The diaphragm pump has an adjustable feed rate that is used to adjust the chlorine solution feed rate.

On a daily basis the solution tank should be filled, the suction line screen should be checked and cleaned, and the operation of the solution pump should be checked. The volume of solution and volume of water added each day should be recorded. A test for the chlorine residual at the effluent of the facility will indicate if the pump feed rate is at the proper amount. The chlorine residual at the effluent of the facility should be high enough to maintain a detectable residual in the recommended amount of at least 0.2 mg/L throughout the distribution system. If the chlorine residual is too low, the solution pump rate should be increased. If the solution pump rate cannot be increased, then the strength of the solution in the solution tank should be increased by changing the ratio of solution to water.

On a weekly basis, the solution tank should be thoroughly cleaned. Maintenance of the solution pump should be in accordance with the manufacturer’s recommendations. On a monthly basis all valves should be checked for proper operation or leaks. All plastic feed lines should be checked for damage, kinking, or clogging. The abnormal situation would be the failure of the solution pump. A spare solution pump should be available to immediately replace the failed pump. If the pump motor is operational, the pump can be rebuilt by replacing the diaphragm and the suction and discharge valves. Unless the pump body is damaged, these parts usually restore the pump to proper operation.

Chlorine Dioxide
Chlorine dioxide is generated by the reaction of a chlorine solution with a sodium chlorite solution in a chlorine dioxide generating tower. The benefits of a chlorine dioxide disinfectant over chlorination are the trihalomethanes compounds are not formed, chlorine dioxide is more effective than chlorine in killing bacteria and viruses at a pH range from 8 to 10, chlorine dioxide does not combine with ammonia, and chlorine dioxide maintains a more stable residual in the distribution system. The equipment required for the generation of chlorine dioxide is the same chlorinator unit used to feed chlorine, a metered solution pump for sodium chlorite, a solution tank for the sodium chlorite solution, and a chlorine dioxide generator.

Start-up
The start of the chlorine dioxide generator coincides with the start-up of the treatment facilities. The operator should determine that the chlorine feed rate is adequate and that the sodium chlorite solution tank is filled. The generation of chlorine dioxide is evidenced by the yellow-green color of the water as it rises in the generator. Chlorine residual tests are taken by the same procedures used for chlorination.

Normal Operations
Normal operations are the continuous feed of chlorine dioxide to the system. The rate of feed can be increased by increasing both the chlorine and the sodium chlorite feed rates.

Records
Records for the application of chlorine dioxide are the same as chlorine except the quantity of sodium chlorite used is also recorded.

Monitoring
Monitoring of the chlorine dioxide application consists of the chlorine residual tests. The rate of feed for both the chlorine and sodium chlorite solution can be increased or decreased as necessary to maintain a detectable chlorine residual in the recommended amount of at least 0.2 mg/L in all parts of the distribution system.

Maintenance
There is no additional maintenance of the chlorine dioxide system over the maintenance of a chlorinator and a metered solution feed pump.

Safety Precautions
Sodium chlorite is supplied as a dry powder and is very combustible around organic compounds. Whenever spills occur, the sodium chlorite should be neutralized with water. When fires occur, they should be smothered with soda ash. Do not spray water into a burning drum because it may cause an explosion.

Other Disinfection Systems
There are other disinfection systems available for the treatment of water supplies, such as ozone and ultraviolet. At the present time, these systems are not widely used, usually because of the relatively high cost of operation and the lack of any simple test to measure the effectiveness of the system. In addition, water is subject to recontamination in the distribution system and these two methods do not provide any residual disinfecting capability to destroy bacteria after it leaves the treatment facility. If systems such as these are in use, the operation and maintenance procedures should be developed based on the manufacturer's recommendations.

Fluoridation
The effect of fluoride in public water supplies is to reduce dental cavities. There have been many studies to support this theory and it is generally accepted by water suppliers and by the public. These studies have established that water with a fluoride content of about 1.0 mg/L causes a decrease in the number of cavities in children's teeth. Excessive fluorides in drinking water may produce mottling of teeth. The maximum contaminant level (MCL) for fluoride is based on the annual average of maximum daily air temperatures. The reason air temperature is used is because in warmer climates people drink much larger quantities of water than in the colder climates. This results in a larger daily intake of fluoride. Fluoride is available for use in water systems in three common chemical compounds: sodium fluoride, hydrofluosilicic acid, and sodium silicofluoride.

Sodium fluoride (NaF), a white, odorless material available in powder or crystal form, has the unique quality of solubility of 4.0 grams per 100 ml in water temperatures normally encountered in water treatment practice. The relative constant four percent solubility of sodium fluoride makes it ideally suited as the basis of design for the saturator type feeder where water slowly is passed through a bed containing a large amount of sodium fluoride.

Hydrofluosilicic acid (H$_2$SiF$_6$), a 20 to 35 percent aqueous solution, is a clear, straw colored, fuming, corrosive liquid with a pungent odor and the ability to irritate skin. Because hydrofluosilicic acid contains a relatively high proportion of water, the shipping costs can be
quite high for large quantities. Attempts to dilute the acid are subject to errors in measuring so it is better to use the acid undiluted from the container. If the acid is too concentrated for the solution feeder to handle, then weaker solutions of other chemical compounds are generally indicated. If the acid must be diluted, care should be taken to avoid formation of precipitate of silica.

Sodium silicofluoride (Na$_2$SiF$_6$) is converted from hydrofluosilicic acid to a dry material containing a high percentage of available fluoride. This material has eliminated the water content of the hydrofluosilicic acid, thus reducing the shipping costs. Sodium silicofluoride is a white, odorless, crystalline powder. Its solubility varies from 0.44 grams per mL at 0°C to 2.45 grams per 100 mL at 100°C so it is not suited for use in saturators. Sodium silicofluoride can be fed with a dry chemical feeder into a solution tank with a mixer and the solution is applied to the water supply.

Start-up
The start-up of chemical feeders, either dry feeders or solution pumps, should be simultaneous with the start-up of the water supply pumps, because the feeding of fluoride to water in the piping system when the water supply pumps are not running could result in harmful overfeed to the consumers. Most chemical feeders are normally wired into the control wiring of the water supply pump.

Normal Operations
The normal operation is to provide feeding of the fluoride compound to the finished water output of the treatment facility or well. Application should be at a point where all of the water produced passes. If there is multiple output and there is no common point, then a separate feeding arrangement will be necessary for each location. The point of application should be after the filtration process and as far away as possible from any other chemical applications which contain calcium since this could cause the loss of fluoride by precipitation.

Chemical Feed Equipment
1. Where saturator chemical feed equipment is used, the operation is similar for either upflow or downflow saturators. In downflow saturators, the water passes through a layer of sodium fluoride which is supported by layers of sand and gravel. There is an inverted cone on the bottom of the container which houses the solution pump suction line. The water dissolves the sodium fluoride to a four percent concentration. As the water passes through, the sand, gravel, and cone prevent particles of undissolved sodium fluoride from passing into the water system.

In the upflow saturator, the water is distributed to the bottom of the solution tank where it passes up through a layer of sodium fluoride. As it passes through the sodium fluoride, the water attains a four percent concentration of fluoride. The flow rate of water is slow enough so the undissolved sodium fluoride remains on the bottom of the solution tank. The solution pump suction is in a floating strainer and foot valve on the surface of the liquid.

2. Where a dry chemical feeder is used, the chemical is usually sodium silicofluoride and the feeders are either volumetric (by volume) or gravimetric (by weight) to deliver a uniform amount of fluoride chemical per unit of time. The dry chemical drops into a solution tank where it is mixed with water, assisted by either a water jet or a mechanical mixer. A mechanical mixer is more dependable and provides better dissolution of the fluoride in the
water. The water in the solution tank then flows, either by metering pump or by gravity, to the point of application.

3. When hydrofluosilicic acid is used, it is fed by a metering pump. Metering pumps are available in several types. The most common are: a diaphragm pump with a flexible diaphragm that moves to force a specific amount of liquid out of the pump chamber and alternately moves in the opposite direction and draws the liquid into the pump chamber from a reservoir; a piston metering pump with a piston that alternately moves forward and back, the forward stroke forcing the liquid out of the chamber and the back stroke drawing in liquid from a reservoir; and peristaltic pumps which force uniform amounts of liquid to flow through a flexible plastic tube by passing movable rollers along the tube. The diaphragm metering pump is the most common because it is economical to purchase and maintain. The piston metering pump is usually more rugged for larger installations. The peristaltic pump has the advantage of providing more uniform flow, eliminating the pulses caused by the diaphragm and piston type metering pumps. The suction line of the metering pump should be run into the acid carboy, which should be vented to the outside since the fumes from the hydrofluosilicic acid are pungent and corrosive.

Fluoride Feed Rates
The fluoride level in a water supply is accomplished by adding the proper concentration of a fluoride chemical at a consistent rate.

Records
Records of the operation of the fluoride chemical feed equipment should be kept on a daily basis. The records should show the quantity of the chemical applied each day and in the case of a saturator, the gallons of water fed through the saturator. In all cases, the records should contain enough information so the total amount of fluoride applied can be determined. The results of analysis for fluoride in the system should be recorded daily.

Monitoring
A sample should be taken from the system and an analysis of fluoride should be made in accordance with an accepted and approved method. The tap at the sample point should be run long enough so the sample is representative of the water in the main. Water samples should be taken and analyzed at least daily.

Maintenance
The proper maintenance of the fluoride feed equipment will insure the continued normal operation. The maintenance of the equipment always should be in accordance with the manufacturer's recommendations. The basic equipment used for feeding fluoride is the solution metering pump, the dry chemical feeder, and the mechanical mixer. The maintenance of these units generally consists of keeping the equipment clean and lubricated.

Electric motors usually come with a prescribed schedule for lubrication and many small motors do not require any lubrication. The right type and amount of lubrication is important. Gear boxes used for speed reduction usually require filling with a proper gear oil or lubricant.

Keeping the equipment clean and operative is of prime importance since the fluoride chemicals are very corrosive and tend to build up precipitates which interfere with the flow of water. Spare
parts for solution pumps should be kept on hand and a spare pump should be available for use when a pump is being repaired.

Safety Precautions
Fluoride compounds are very corrosive and the fumes from hydrofluosilicic acid are pungent and irritating to the skin. The operators always should wear protective safety gear when handling fluoride chemicals. In the dry state, fluoride is dusty and respirators should be worn. Care should be taken that the dust does not get into any food consumed by the operators. When handling hydrofluosilicic acid, rubber gloves and a face shield should be used to protect against splashes on the face, hands, or arms. Any spills should be washed away with large amounts of water.

Abnormal Conditions
Overfeed incidents - There is always the potential for overfeeding; however, most overfeeds are not of serious consequence but must be recognized and corrected. In the case of serious overfeeds which produce concentrations greater than 2.0 mg/L, OEHS must be notified.

Aeration
Aeration is the introduction of air into water, naturally or by the treatment process. A good example of natural aeration is the tumbling of water over rocks in a stream bed. The turbulence brings the air into contact with the water and the air dissolves into the water. The induction of air into water can help oxidize iron, manganese, and certain types of tastes and odors; raise the oxygen level in the water; reduce the carbon dioxide, hydrogen sulfide, and methane; and remove volatile organic compounds. Excess carbon dioxide in water can cause corrosion, can make iron removal more difficult, and can inhibit the lime softening process.

- Hydrogen sulfide is a poisonous gas which can be dangerous in water treatment. It has a rotten egg odor and affects the taste of coffee, tea, ice cubes, and other foods. The gas is corrosive to metals and will tarnish silverware.
- Methane, commonly called swamp gas, is flammable and explosive and will impart garlic-like taste into water.
- Iron and manganese in water can cause a metallic taste in addition to staining clothes and plumbing fixtures.
- Some tastes and odors in water can be removed or reduced by aeration if they are caused by volatile substances which are readily oxidized. Many taste and odor causing substances will only be partly reduced by aeration and must be removed by other processes.
- An increase in dissolved oxygen in water is beneficial because it improves the taste of otherwise flat tasting water from the lower portion of lakes or reservoirs. A large amount of dissolved oxygen in water is called saturation and this can cause problems in the treatment process such as corrosion, floating floc, and air binding of filters. The turbulence of a cascade type aerator can remove excess dissolved oxygen to the atmosphere. There are numerous volatile organic chemical compounds in water as a result of industrial pollution which are known or suspected carcinogens. Also, chlorine tends to react with certain natural organic materials to form trihalomethanes.

General Description
Each type of aerator has its own characteristics and may be more effective for one constituent than another. There are many different types of aerators but they basically fall into the following categories:
1. Water into Air Aerators
In this type of aerator, the water flow is broken into small drops and falls through the air, creating intimate contact with the air. Different types are:

- Cascade Aerator - In a cascade aerator the water flows down a series of steps or circular rings stacked together with a central vertical feed pipe;
- Cone Aerators - A cone aerator is similar to stacked pans except the water flows from one pan to the next by means of specially-designed cone-shaped nozzles;
- Slat and Coke Tray Aerator - The slat and coke tray aerator usually has three to five trays which have spaced wooden slats. The trays are filled with pieces of coke rock, ceramic balls, or limestone. This creates a larger contact area between the air and the water;
- Draft Aerator - A draft aerator is similar to the slat and coke tray aerator with a positive upward air flow from a blower introduced at the bottom of the aerator. An induced draft aerator has a top-mounted blower which pulls an upward flow of air from the bottom of the aerator;
- Spray Aerator - A spray aerator disperses water out into a fine spray that falls through the air in a fountain effect. These are sometimes located within a structure to prevent windblown losses and reduce freezing problems. A spray aerator also may incorporate the effects of a cascade and a draft aerator for maximum effect.

2. Air into Water Aerators
This type of aerator mixes air into the water by either diffusers or draft tubes. They are:

- Diffuser Aerator - A diffuser aerator releases tiny bubbles of compressed air into the water, usually near the bottom of an aeration tank. These diffusers are usually mounted on a manifold pipe at a regular spacing to provide a rolling type mixing pattern to the water;
- Draft Tube Aerator - A draft tube aerator is a submersible pump with an air intake pipe. A partial vacuum is created by the eye of the impeller. The air and water are mixed by the turbine impeller and then discharged to the aeration tank.

3. Combination Aerators
This type of aerator produces air mixed in water by mechanical means or by applying water to compressed air or diffusing air into a pressure pipeline. They are:

- Mechanical Aerators - Mechanical aerators have a propeller mixing blade which is driven by a motor. The rapidly turning blade causes a violent mixing of the air and water. These have several different configurations: surface, submerged, combination (two blade), and draft tube;
- Pressure Aerators - Pressure aerators are of two basic types: water is sprayed into high pressure air within a pressure tank and air is diffused into water directly in a pressure pipeline.

4. Air strippers
This type of aerator forces air to flow upward through water which is flowing downward through a packed bed of small pieces of material. Packed tower air strippers which are a vertical column partially filled with small pieces of material use this process. As the flow of water trickles down through the material there is a countercurrent flow of air from a blower upward through the material.

Start-up/Shut-down
The start-up of aeration units should coincide with the start-up of the flow of water through the treatment process. With forced or induced draft the countercurrent flow of air should be established before the flow of water starts through the aerator. When the aerator is shut down the blower should continue to operate until all water has passed through the aerator facilities. On shut-down, all water pipes and bottom collection chambers should be effectively drained to prevent freezing.

Normal Operations
Normal operations should include visual inspection of the equipment for any damage due to corrosion.

Monitoring
During operation of the aeration facilities the following tests should be made:
- DO (dissolved oxygen);
- pH;
- Temperature;
- CO₂ (carbon dioxide);
- Manganese; and
- Taste and odor.

The DO test and the temperature will indicate possible over or under aeration of the water. The pH can be used as an indication of CO₂ removal or of the best pH range for removal of H₂S or iron and manganese.

Frequency of testing would depend on the normal variations in the source water. In water with very little variation, daily testing may not be necessary.

Where aeration is used to remove volatile organic compounds, the analysis should be made by a laboratory certified for volatile organic compounds and, if necessary, for vinyl chloride. Analyses should be done a minimum of once each calendar quarter.

Records
Records should be kept for the number of hours of operation, the results of all water quality tests, and any major maintenance or operational problems.

Maintenance
The operator should maintain the pumps and blowers according to the manufacturer's recommendations. The operator should visually inspect the aerator for damage due to the corrosive atmosphere such as eroded paint, rust, and rotting of wooden parts. All damaged parts should be replaced as soon as possible and painted surfaces should be restored.

Caution: All paint used must be approved by OEHS and be certified as meeting the NSF Standard 61. The paint shall not transfer any substance to the water which will be toxic or cause foul tastes or odors.

Operation Problems
1. Too much dissolved oxygen (DO) can be added resulting in super-saturation which can cause corrosion of tanks and pipes, floating floc in clarifiers or sedimentation basins, and false
clogging of filters. Monitoring of DO and temperature will alert the operator to this problem. As the temperature increases, the saturation concentration for oxygen in water decreases.

2. The growth of algae and slime on the aerators may occur during the summer months. These can be controlled by the addition of copper sulfate, chlorine, or other suitable chemicals.

3. Where diffusers are used, they can become partly clogged from dust, oil, debris, or chemical deposits. This can be prevented by cleaning air filters, not over-lubricating the blowers, and preventing the backflow of water into the diffusers. Diffusers should be cleaned according to the manufacturer's recommendations.

Adsorption

Water contains various organic compounds which can cause color, tastes, and odors. The threat to public health also is a concern in regard to organic compounds, particularly those compounds created by the reaction of chlorine with certain organic compounds (mostly humic materials) and to certain man-made organic compounds such as insecticides, herbicides, and cleaning solvents.

The naturally occurring compounds enter the water supplies due to the decay of animal and vegetable matter on the watersheds of surface supplies. The insecticides and herbicides present in the runoff from agricultural land and the man-made compounds, frequently found in ground-water sources, are the result of accidental spills, discharges, and uncontrolled disposal. Organic chemicals can be partially removed by using chlorine or potassium permanganate to oxidize the compounds or by aeration, by coagulation/flocculation, by sedimentation, and by filtration; however, these processes cannot remove some organic compounds as efficiently as adsorption.

Adsorption is the use of activated carbon for organics removal. Activated carbon is created by heating carbon (usually bituminous or lignite coal) to very high temperatures in the presence of steam. This creates a very porous surface on the particles whose surfaces attract and hold organics. Once the surface of the particles is covered with organics, it loses its ability to adsorb and must be replaced with fresh carbon.

Activated carbon is available as powdered activated carbon (PAC) and granular activated carbon (GAC). PAC typically is added to the treatment process, usually as near the beginning as possible to provide the greatest contact time, and is removed by the filters to prevent carryover to the system. It usually is added only to the water for control of tastes and odors when necessary. GAC typically is used permanently in the treatment process as a filter material or as the media in GAC contactors for the removal of specific compounds such as trihalomethanes.

Powdered Activated Carbon (PAC)

a. PAC is a very fine dusty material which must be stored and handled with care. This material normally is purchased in 50-lb. bags or, at very large installations, it may be purchased in bulk. The hopper of the dry chemical feeder should be equipped so a bag of carbon can be hung on the open door of the hopper. The top of the bag is slit and the door is closed causing the bag to empty inside the hopper controlling the dust. The dry chemical feeder drops the dry material, at an adjustable rate, into a mixing tank where it is mixed into a slurry with large amounts of water. This slurry should be conveyed to the point of application as quickly as possible to prevent the carbon material from settling out and clogging pipes or troughs.

b. The PAC should be applied to the raw water or the rapid mix basin if possible and always should be fed ahead of any chlorination, because the chlorine will diminish the effectiveness of
the PAC and the PAC will diminish the effectiveness of the chlorine. If possible, prechlorination should be discontinued when feeding PAC.

Start-up
Before starting the feeding of PAC, the jar test should be done to determine the beginning dose rate, and the prechlorination should be discontinued. Starting would consist of filling the feeder hopper, starting the flow of water in the mixing chamber, starting the solution feed pump and/or opening valves, and setting the indicated dose rate.

Normal Operations
Normal operations would be to refill the feeder hopper as necessary, adjust the dose rate as indicated by subsequent threshold odor tests on the filter effluent, checking mixing chamber and pipes or troughs for clogging, and cleaning up any carbon dust.

Monitoring
Monitoring consists of the threshold odor test on the filter effluent, making visual observations of the presence of carbon in the water at various locations in the treatment process. For example, it is desirable for most carbon to be settled out before the filters. Changes in the coagulant dose rate usually can correct this problem. The filters should be watched for shorter than normal filter runs since the PAC will cake on the surface of the filter or can penetrate through the filters. An effluent sample should be filtered through a membrane filter paper. If PAC is present, it will darken the filter paper surface. The free available chlorine residual in the plant effluent water must be monitored carefully since the PAC will reduce the effectiveness of the chlorine.

Records
Record keeping can provide a guideline for treatment of similar occurrences in the future, particularly for taste and odor problems. A record should include the dates of the occurrence, a description (i.e., "fishy", "septic", "musty", etc.), the treatment changes made, the jar test results, and the amount of PAC fed.

Maintenance
Maintenance of PAC feeding equipment is routine clean-up of carbon dust, and clearing of any caking or clogging in hoppers, mixing tanks, lines, or troughs. Routine maintenance of the chemical feeder, the mixer, and the solution pump should be in accordance with the manufacturer's recommendations. All electric motors and switches should be frequently cleaned on the outside. All electric equipment should be explosion-proof, so there should be no unnecessary opening of switch and terminal boxes.

Operating Problems
a. The dust from the fine powder is a fire hazard. The black carbon is hard to remove from clothes and skin.
b. PAC can pass through the filters and enter the distribution system causing "black water" complaints from customers.

Granular Activated Carbon (GAC)
a. Granular activated carbon has larger particles and typically is used when carbon is required continually to remove organic compounds. GAC is used like a filter material either in conventional filters or in GAC contactors when a greater depth of carbon is required to provide additional contact time necessary to remove certain organic compounds. GAC normally is
purchased in bulk and is placed in the filters or contactors in a slurry form using an eductor system to move the slurry and reduce the dust.
b. The length of time the carbon is effective in the removal of organics depends on the amount of organic compounds in the water and the depth or quantity of carbon.
c. When the carbon loses its ability to adsorb, it must be removed and replaced with fresh carbon.

Start-up
When conventional filters are converted to GAC media, the distance from the top of the media to backwash troughs should be recorded so the bed depth can be checked for loss of media. The backwash rates should be carefully established to prevent the loss of media. All other start-up procedures would be the same as a conventional filter. Carbon contactors are similar in operation to pressure filters and would have no special start-up procedures.

Normal Operations
The normal operations of a GAC filter or a GAC contactor would be the same as a conventional filter.

Monitoring
The operator would monitor the head loss and the turbidity of the effluent water and initiate the backwash procedures when required. The presence of specific organic compounds in the influent and effluent water should be tested a minimum of once per week to determine the remaining bed life of the media. The distance between the top of the wash water trough or some other predetermined reference point and the top of the carbon media should be measured and recorded at least every three months to determine the rate of carbon loss. A check of the backwash water also can indicate the loss of carbon.

GAC manufacturers also can recommend testing procedures to determine the condition of the media. Threshold odor tests should be conducted routinely on raw and finished water as a check on the effectiveness of the filter. Since bacteria are known to thrive in GAC filters, bacteriological examination of filter effluent and final chlorinated water should be taken daily.

Records
In addition to the record keeping recommended for the filtration process, records of the results of the above recommended tests should be compiled so the operator is aware of the amount of carbon lost, the estimated remaining bed life of the carbon media, and the effectiveness of the treatment.

Operating Problems
a. The same operating problems as filtration exist for the adsorption by GAC such as bed fouling by mud balls, heavy floc carryover, backwash rates, and filter breakthrough. With GAC filters the coagulation, flocculation, and the sedimentation processes must be operated for the highest reduction of suspended materials.
b. The filter flow rates must be kept uniform since fluctuations can cause filter breakthrough which will reduce the contact time with the carbon.
c. The backwash rates are critical since too low a rate will under-expand the bed and mud balls will form, and too high a rate will wash the carbon media out causing unnecessary loss of media. The water temperature also should be taken into account when setting the backwash rate since this can affect the percent of bed expansion.
O&M PLAN FOR DISTRIBUTION

The distribution system includes the conveyance of water from the source to the customer including pumping, transmission mains, distribution mains, valves, fire hydrants, customer service lines, and distribution system storage. The operation and maintenance of a water distribution system is a separate function in the operation and maintenance of a water system.

The water must be delivered in the same potable, ready-to-drink condition that it left the treatment facility. To protect the water quality, the water distribution workers must at all times protect the water from any type of pollution or degradation.

Plans and Records
A. Distribution System Maps
When water mains are installed, a plan of the pipe and fittings must be drawn to establish a record of the facilities installed. This information should be either added to the existing plans or a new plan should be started which would be referenced to the overall system plans. A system should be established for all distribution system plans so that they are of the same scale and fit together to cover the entire system.

The distribution plans become the records of the system showing the date installed, the work order or extension number, the material of the mains, the type of valve, the locations of the mains within the streets or rights-of-way, the location of services, fire hydrants, and valves.

B. Locations of Pressure Zones
On the system plans the normal operating pressures should be indicated at typical locations such as fire hydrants and customer services. These pressures are useful in comparing operating conditions when there is a suspected leak in the system.

Sometimes a water system must be divided into different pressure zones so that customers at higher locations have adequate pressures for the service they desire. Also, customers and the water system mains must be protected from excessively high pressures which could cause damage and break mains and customers' pipes. To establish these pressure zones, the water system may have booster pump stations which pump the water to a higher elevation or the water system may have pressure-reducing stations which reduce the high pressure to a lower, acceptable level. The pressure zones must be clearly marked on the system maps so that inadvertent flow between the zones does not occur. Also, all valves which should normally be closed to separate the zones should be clearly marked on the plans as normally closed.

A description of the operating procedures for each area of the distribution system including pumps, chlorinators, storage tanks and reservoirs, valves and pressure regulating valves should be included in the O&M Plan. This would describe how each part operates with the other parts of the system (i.e., what are the controlling conditions, how is the system monitored, and what records are maintained).

C. Updating and Correcting Plans
When additions or changes are made to the system, the plans should be updated and corrected. Initially, the field personnel such as the maintenance crew or the construction inspector make the changes in pencil on a working set of prints.
D. Production and Pumping Records
A record of the amount of water produced, the chemicals used in treatment, and the water pumped should be kept for the system. These records provide a history of the operation and indicate the demands of the system and the costs of operation. A comparison of records can be used to identify suspected system problems such as increased pumping or treatment costs, or possible loss of water.

These reports should reflect the water taken from all sources of supply such as wells, streams, rivers, and lakes, or purchased from another supplier. The records should indicate the water in the system storage facilities so a daily system use can be developed. A system of keeping records on a month-to-date basis and a daily average use basis can be compared to previous year’s performance.

Distribution System Components
A. Transmission and Distribution Mains
There are many materials used in transmission and distribution mains. Some of the more common are as follows:

1. Cast Iron - Cast iron pipe has been used for water systems for over a century. The older pipe usually had bell and spigot joints which used jute and lead to make a watertight joint. Because of the labor and skills needed to pour a lead joint, this type of pipe is no longer commonly used; however, sometimes repairs are made using poured lead joints. Another factor to consider is the potential for lead contamination in the water. The more modern joints for cast iron pipe and ductile iron pipe are rubber gasketed joints which provide a simple seal which can be easily installed.

2. Concrete - Concrete pipe has been used for transmission mains because of its long life. It normally is available only in larger diameters and is difficult to make connections. The joints are usually sealed with an O-ring rubber gasket.

3. Asbestos Cement - Asbestos cement pipe was used extensively from 1940 to 1980 as a less expensive material. This pipe can release asbestos fibers to the water if the water is aggressive.

4. PVC (Polyvinyl chloride) - PVC pipe is the less expensive substitute for the ductile iron pipe. This pipe is light in weight and easy to handle and join. It is subject to damage by exposure to sunlight and petroleum products will penetrate the pipe.

B. Valves
Several types of valves normally are used in transmission and distribution systems. Some are used for normal control and others have special purposes.

1. Gate Valves - Gate valves are the most commonly used valve in waterworks systems. In a gate valve, there are double discs which by turning the stem are moved downward into the stream of water. When the gates are at the bottom of their movement, a wedge is engaged which spreads the gates apart and forces them against the seats. By turning the stem in the opposite direction, the wedge pressure is released, allowing the gates to move away from the seats. Further turning of the stem raises the gates out of the stream of water to a fully opened position. These valves have proven to be reliable and maintenance free. Maintenance should consist of periodically exercising the valve to keep the threads clear of buildup and checking the valve stem seals.
2. Butterfly Valves - Butterfly valves frequently are used for the regulation of flow. They have a wafer which rotates in the water stream from fully open to fully closed. The wafer usually has a rubber gasket on its sealing edge. Maintenance consists of replacement of the gasket when it becomes worn.

3. Check Valves - Check valves are used to control the flow in only one direction. This is normally done by having a hinged flapper which the flow of water will move out of the water flow area. When the flow of water attempts to reverse, the flapper is returned across the flow on to the valve seat stopping the flow. The movement of the flapper is caused by the reverse flow of water, exterior springs, or gravity. There are other configurations of check valves which are designed for special purposes.

4. Pressure Relief Valves - Pressure relief valves are used to bleed off a flow of water and relieve a high pressure surge condition. Surges of water, such as from the start-up of a pump, can cause high pressures which could damage pipe and facilities. The pressure relief valve usually is kept closed by a spring pushing against the valve disc. The surge of high pressure overcomes the spring, releasing water. As the pressure is lowered to normal, the spring forces the disc closed.

5. Pressure Reducing or Pressure Regulating Valves - These valves normally are used to maintain a specific pressure on the downstream side of the valve. This action is accomplished by a diaphragm which controls the position of the valve disc. As the pressure on the downstream side drops, the diaphragm opens the disc to allow an increase in the flow of water. As the pressure increases on the downstream side, the diaphragm closes the disc, reducing the flow of water. These valves, because of their constant movement, require frequent maintenance to keep them working and in adjustment. The items needing attention are the strainers, needle valves, pilot valves, and the main diaphragm. These valves frequently are used to control the pressures in various sections of the distribution system.

6. Air Relief Valves - Air can cause serious pipeline problems by restricting the flow. Air can get into the water system through pumps, packing glands, and leaking joints. These valves are installed at the high points on the system and are simple float valves which release air until the water enters the valve body and raises the float.

7. Plug or Ball Valves - This type of valve normally is used on customer service lines and consists of a tapered plug or ball which has an orifice the full size of the water stream. When fully open, the orifice is in line with the water stream and, when fully closed, the orifice is at right angles to the water stream and the sides of the plug or ball completely stop the water flow. These valves are maintenance free and cause little flow resistance when fully open.

8. Globe Valves - Globe valves cause the water to flow up through an orifice. These valves rarely are used in waterworks systems due to their resistance to flow and high maintenance requirements.

9. Altitude Valves - Altitude valves are used to control the height of water in distribution storage tanks. These valves open when the system pressure drops and water flows out of the tank. When the system pressure increases, the water flows into the tank until the tank is nearly full. The altitude valve then closes. This valve is very similar in operation and maintenance to a pressure reducing valve. Maintenance consists of checking the strainers, diaphragms, small piping, and needle valves.
C. Fire Hydrants - Fire hydrants are used to provide access to the water system by fire fighting personnel. Fire hydrants have an underground valve and a barrel to deliver the water to hose nozzles above the ground. In cold climates, fire hydrants of the dry barrel type are used because of the danger of freezing. Dry barrel hydrants are designed to automatically drain the water from the barrel when the hydrant is shut off. The hydrant nozzles are usually 2 ½-inch diameter "steamers" and 4 ½-inch diameter "pumpers". Fire hydrants usually are manufactured so maintenance of the valve can be accomplished without excavation. All fire hydrants should be equipped with a gate valve on the lateral pipe leading from the water main. This valve will permit the water distribution crews to shut off the hydrant which is damaged or is malfunctioning. Fire hydrants should be flushed and checked at least semiannually for proper operation, particularly that they shut off completely and that the barrel drains.

Fire hydrants should be flushed and checked at least semi-annually for proper operation and for the following items:
1. Complete shut off;
2. Smooth and ease of operation;
3. External parts (i.e., paint, caps, chains);
4. Hydrant drain (does barrel drain completely).

Flushing the hydrants also help to clear any sediment from the distribution system. Fire hydrants require frequent maintenance because they are frequently operated, often by untrained personnel. The parts which often need attention are the valve seats, which are resilient rubber; the valve stem packing, which will leak; and the stems, which become twisted due to turning too hard to shut off.

A cooperative effort between the fire fighting personnel and the water system will help reduce hydrant damage and effect prompt repairs when needed. If a hydrant is taken out of service for repairs, the local fire company or municipality should be given notification. A record book should be kept specifically for hydrants taken out of service. It should contain information on the date the hydrant was taken out of service, the time, the hydrant number and location, the municipality, the employee's name who took it out of service, the name of the person from the municipality who was notified, the date returned to service, the time, and the person notified.

D. Blow-offs- Blow-offs area tee and valve arrangement at locations where fire hydrants do not adequately flush the system. These are usually dead ends or at locations which, due to topography, require frequent flushing such as at low points. These blow-offs must have their flow directed so that no damage occurs. The blow-offs must be located deep enough to prevent freezing and the discharge pipe should be drilled to permit draining.

E. Records - Records of the locations of all valves, fire hydrants, and blow-offs must be indicated on the system plans. Records of the operation and any maintenance performed must be kept. This information is useful in planning replacement of facilities due to age.

F. A schedule and scheme for flushing the distribution system should be developed and included in the O&M Plan. The schedule should be at least semi-annual and the scheme should provide for flushing the system from the source towards the extremities of the system.

G. Schedules should be developed for the following:
1. Valve exercising, maintenance, and replacement;
2. Fire hydrant flushing, inspection, maintenance, and replacement;
3. Meter testing and replacement (includes master meters);
4. Main replacements;
5. Cleaning and inspection of distribution storage facilities including cathodic protection equipment;
6. Section 1, Chapter 3, has additional information regarding maintenance schedules and records.

Pumps

Pumps are used in water systems to move water or other solutions from one location to another and to add pressure to the water by pumping it to a higher elevation. The common uses of pumps in water systems are well pumps, raw water pumps, chemical feed pumps, backwash pumps, high service pumps, booster pumps, and fire service pumps.

A. Types of Pumps

Centrifugal pumps are the most common type of pump used in water systems. These pumps have the ability to adjust to varying head and flow conditions and are available in a wide variety of configurations manufactured to meet specific conditions. The other type of pump used is the positive displacement pump which is used for feeding chemicals. These are either diaphragm type or piston type which delivers a measured volume with each revolution or cycle.

B. Capacities and Purposes

The capacities (flow and head) of each type of pump should be matched to its purpose. The capacity of each pump should have been specifically selected when the design of the system or the component was done by the engineer. However, as system components and uses change, so do the capacities and operating conditions for pumps.

Therefore, the water system operator should know the flow and head (pressure) the pump was selected for and should periodically test the pumping unit for the present operating conditions. The operator should plot the results of the pump tests on the pump operating curve to determine if the operating point has changed from the design conditions and what the expected efficiency should be.

1. **Well Pumps**

Well pumps are usually of a vertical turbine configuration and have multiple stages. However, the small water systems that use low capacity wells are usually equipped with submersible pumps. The well pumps can be driven by a shaft extending down the column from a motor located on the surface or by a submersible motor attached directly on the pump and suspended in the well on the end of the column pipe. Well pumps should have their capacity matched to the capacity of the well so that the well is not overpumped, causing excessive drawdown of the aquifer which can cause a deterioration of the water quality. If the water is lowered to a level near the pump impellers, the pump also can be damaged. The capacity of the pump (flow and head) would have been selected at the time the well initially was pump tested and put in service. As the pumping level would lower due to depletion of the aquifer, the head would increase and the flow would decrease. The operator should be aware of the original conditions and should monitor the pumping water level in the well through the use of an air line or level sensing equipment.

2. **Raw Water Pumps**
Raw water pumps are used to transfer water from the stream or lake to the treatment facilities. These are usually vertical pumps with an open impeller so they will pump some small pieces of debris. These usually are low head and high capacity. Because these pumps are pumping raw water which contains grit and debris, they are subject to wear which will reduce their capacity. These pumps should be tested periodically for capacity and their efficiencies checked on the pump curve.

3. Chemical Feed Pumps
Chemical feed pumps usually are positive displacement type; however, they can be centrifugal. Since these pumps are comparatively small compared to other pumps and motors, operating efficiency is not usually a consideration for these pumps. Chemical feed pumps must reliably deliver specific volumes of solutions at required pressures; any failures could affect the treatment process. For this reason, the water supplier should have spare pumps and parts for repairs available.

4. High Service Pumps
High service pumps deliver the finished (potable) water from the clearwell to the transmission distribution system. These pumps are usually high capacity and high head. There should be at least duplicate units for reliability. The capacity of these pumps should be equal to the total capacity of the treatment facilities; however, at larger facilities the pumps may be of various capacities so combinations of pumps may be used for operational flexibility. The water pumped is clean and clear and should not produce any excessive wear on the pump parts. These pumps run for long periods of time; therefore, maintenance of bearings and shaft seals is important. The alignment between the pump and the motor also should be checked since misalignment can cause excessive wear on the pump and motor bearings.

5. Booster Pumps
Booster pumps are the same type of service as high service pumps except they usually are located at various points in the distribution system to pump water to higher pressure zones. The operation and maintenance of these pumps would be the same as high service pumps.

C. Reports of Operations and Maintenance
A record of the hours of operation for each pumping unit should be maintained. This record can be used for planning preventive maintenance of the units. A record of the maintenance and the cost of repairs will help to evaluate the units when they are being considered for repair/rebuilding or replacement.

D. Monitoring of Pumping Operations
There are many monitoring and control systems for pumping systems. These vary from very simple manual operation to complete automation.

The following are examples of typical monitoring and control systems:
1. The simplest system would be a manual on/off switch with an indicating pressure gauge and a water meter. This is typical of many small systems with a well, distribution system, and a tank. The operator usually knows the system very well and can adjust the pumping according to the system pressure.
2. A system with a tank level recorder, a pressure recorder, and a flow recorder with automatic pump operation turning the pump on at low tank level and off at nearly full would provide the operator with records and reliability of operation.

3. Where there are various pressure zones on a distribution system, the operation of booster pumps is used to transfer water from one part of the system to another. This type of system requires careful monitoring and usually automatic controls. The information on the operating conditions (tank levels, system pressures, pump flows) must be transmitted to an operations control center so the operator can make decisions which will be best for the entire system. There are electronic systems that review all system parameters on a frequent basis and report the data in a usable form at a central point. These systems also collect data for records and reports and, through the use of a computer, can make operating decisions on the system.

4. In the treatment process there should be monitoring systems in place to control the operation of the pumps. These can be simple visual observance of levels in the tanks or float level controls which indicate levels or can control the raw water pumps. There also are interlocking controls which will stop the pump operation if the water pressure on the suction side of the pump drops below a predetermined value. Another type of interlock is to shut off the pump if the discharge pressure exceeds a predetermined value. There are continuous monitors for turbidity and chlorine residuals which have the capability of interrupting the pumping operation when certain values are exceeded or not met.

Distribution Storage Facilities

Distribution storage facilities can be in-ground earthen, concrete, brick, or steel reservoirs, above ground steel or concrete tanks; or standpipe or elevated tanks. All these storage facilities are used to store treated water for use in the distribution system.

Distribution storage has several purposes such as to provide sufficient water for peak demands which may exceed the pumping capacity, to supply large volumes of fire protection water, and to provide reliability when pumps must be removed from service for maintenance.

A. Types of Reservoirs and Tanks

1. Ground Reservoirs

 Ground reservoirs can be concrete, brick, or steel construction at ground level or below ground. Some typical installations are of concrete, masonry, or brick construction. These reservoirs must be properly constructed to prevent potential entry of any contaminants.

2. Ground Level Storage Tanks

 Ground level storage tanks have a diameter greater than the height and are constructed of steel or concrete.

3. Standpipe

 Standpipes are steel cylinders where the height exceeds the diameter. This tank can hold large amounts of water; however, the pressure does vary depending on the amount of water in the tank.

4. Elevated Storage Tanks

 Elevated storage tanks are steel construction elevated on legs or a pedestal. The elevation of the storage capacity makes all of the capacity available at a usable pressure.
B. Maintenance
Maintenance of distribution storage reservoirs will depend on the type of material used for construction. All distribution storage facilities should be drained, cleaned, and inspected every five years.

The paint system should be inspected for damage, possibly due to ice, and the vent screens should be inspected and repaired to prevent birds and rodents from entering. After cleaning, the interior of the tank or reservoir must be disinfected as required by the WVCSR Title 64 Series 77

1. Steel Reservoirs or Tanks
Steel reservoirs should be painted inside and out with an acceptable paint system. The paint system used on the interior surface of the tank must be certified as meeting the NSF Standard 61 and must be acceptable to OEHS. Some types of paint can transfer substances to the water which may be toxic or can cause foul tastes and odors in the water.

The paint system will protect the steel structure from deterioration and, thus, extend its useful life. A good paint system should last from eight to 15 years. The atmospheric conditions in the area can have an effect on the life of the paint system. For example, the paint will have a shorter life in industrial areas, and a longer life in rural areas.

Metal tanks are subject to corrosion from unstable water which can shorten the effective life of the paint system and attack the metal. The corrosion is caused by stray electrical currents, which are created by electrochemical reactions and the grounding of electrical systems. A cathodic protection system introduces a direct current into the corrosion cycle to offset and cancel out the corrosion-producing action.

Cathodic protection systems use an auxiliary anode of expendable metal which is immersed in the water. Electrical current flowing from the anode to the structure can counteract corrosion losses. Cathodic protection systems require at least annual scheduled maintenance by qualified technical personnel to check the condition of the sacrificial anodes and the wiring connections.

2. Concrete Tanks
Concrete tanks can be treated with a waterproofing system which will seal the surface cracks and stop any leakage and extend the life of the structure. Any coating system that is used must be approved by EPD. It is required that all products that come into contact with the drinking water must be certified as meeting the NSF Standard 61.

3. Ground Reservoirs
Ground reservoirs should be lined and covered to prevent leakage and contamination. The most common material for this purpose is a rubberized fabric. The structure should be checked for any deterioration, growth of weeds in cracks, etc., and the fabric cover should be checked for damage. These should be checked in the spring of the year since the winter ice can damage the fabric. The rain water, leaves, and debris should be removed periodically from the surface.

C. Safety Protection
Access to water system storage facilities can be a safety hazard. Proper precautions must be taken to protect the public and the employees from injury.
1. Where open storage reservoirs exist, there is the danger of someone falling into the water and drowning. All facilities such as this should be securely fenced to prevent unauthorized entrance. All employees working around these facilities should use life vests or other flotation devices.

2. All ladders on steel storage tanks should terminate at a safe distance above ground, be caged, and have a locked gate to prevent access by unauthorized personnel. All ladders should be caged for their full height or a safety harness should be provided.

3. No entrance to a tank should be made by any personnel without first checking for dangerous vapors, fumes, or gases. Also, do not enter a tank without a safety harness and rope tended by a fellow employee from the outside of the tank.

4. Fences around all storage facilities are recommended to prevent unauthorized access and possible vandalism.

D. Records
A record should be kept of the following:
1. The location, year built and by whom, elevation at the base of the tank and the top of the overflow pipe, the size of the diameter and the height, and the capacity in gallons;

2. Painting records of the interior and exterior showing the year painted, type of paint, and the square area for painting. This information will be useful when setting painting budgets;

3. Altitude Valve Records - The type and size of the altitude valve should be noted, along with the type and number of the leathers needed to make repairs, the date repairs were made, and any parts that were used.

Unaccounted-for Water
Unaccounted-for water is water which is produced but is not used or sold to the consumers. There are many factors which are considered in the determination of the percentage of unaccounted-for water.

This percentage is a measure of the efficiency of the system operation.

A. Factors to Consider
Factors to consider in the determination of the unaccounted-for water are:

1. The water produced - Is this quantity accurately determined, has the meter been calibrated, does the meter measure all of the water?

2. The water used for water system purposes such as chemical feed water, filter backwash water, fire hydrant and blow-off flushing - How is each of these uses measured? Careful accounting in the treatment plant is necessary because, in some plants, plant use water is used before the master meter and, in other plants or for other uses, it is used after the master meter.

3. The water sold or used by the consumer must be accurately accounted for. A meter testing program should be in place to periodically test the accuracy of the meters. All consumer use must be accounted for. For example, free water may be provided for parks, cemeteries, or
municipal purposes at sewage treatment plants, borough buildings, and fire companies. All of
this water must be measured and accounted for.

4. Water used for fire fighting purposes – This water only can be estimated, but some careful
calculations by the fire company and the water system can develop a reasonable value.

B. Basic Calculation
The basic calculation is:
1. The water available for sale is the water produced adjusted for the company uses of water as
follows:
a. Subtract any plant use water that is taken off the system after the master meter;
b. Subtract any water used on the distribution system for flushing fire hydrants and blowoffs, and
for fire protection.

2. The water sold or used is the total quantity of water sold to customers through meters plus an
estimate of all unmetered uses either to flat rate customers or for public purposes.

3. When making the calculation, the time interval must be considered since the amount of water
sold only may be determined monthly, quarterly, or annually, and usually all meters are not read
on the same day or at the same time. It is recommended that a one year (four quarters or 12
months) period be considered since this will level off the variables for meter reading, and
seasonal variations. This calculation can be made on a monthly basis by using the totals for the
previous 12 months,

C. Normal Operating Ranges
The normal operating range should not exceed 15 percent for a well maintained system.
However, keep in mind that there are many factors that influence the percent of unaccounted-for
water in a particular system. A number of these factors are:

1. The age and condition of the system. A very old water system which has deteriorated pipe will
have many undetected leaks at joints and pinholes. Although the goal may be the 10 percent, it
can only be accomplished by replacing large segments of the system. A range of 35 to 40 percent
may not be unusual until funds for replacement of mains is available;

2. The pressure in the system can affect the rate of leakage. Thus, high pressure systems may
have a higher percentage of unaccounted-for water;

3. The number of customers per mile of main can affect the unaccounted-for water. Therefore, if
a system has a high ratio of miles of pipeline to the number of customers, the percentage of
unaccounted-for water will increase;

4. Under-registration of customer meters or unauthorized use can increase the percentage of
unaccounted-for water.

Control of Unaccounted-for Water
To reduce the percentage of unaccounted-for water, the following are suggested actions:
1. Calculate the cost of producing a thousand gallons or one hundred cubic feet of water and then
calculate the amount of money which is being "lost" as unaccounted-for water each month. By
identifying this cost, you can justify the cost of the programs to correct the problem;
2. A meter testing program should be installed to test the master meter and other system meters at least annually and to test all customer meters (on a continuing basis) at least every 20 years;

3. An adequate leakage control program:
 a. A program of listening to all fire hydrant valves and services to detect leaks,
 b. The use of detector type meters on fire lines,
 c. Training of meter readers and service personnel to listen for leaks and to detect unauthorized use of water,
 d. Review of meter readings to detect stopped meters or obvious under-registering meters;

4. A record of leaks repaired and the estimated amount of water lost at each leak can help to justify replacement of sections of mains which have a high incidence of leakage.

Maintenance of Water Mains and Services

The maintenance of water mains and services, in addition to the routine preventive maintenance of valves and fire hydrants, involves the repair of leaks and the thawing of frozen water mains and services. A description of the normal procedures should be included in the O&M Plan. The description should include a list of the staff, equipment, and materials normally available for this work, and where you can obtain help such as contractors and suppliers. You also should detail the notifications which are required such as utility locations and sensitive customers (i.e., hospitals, nursing homes, industries, fire companies, and police). You also should consider public notification through the news media for shutdowns of large areas or door-to-door notification for smaller areas.

A. Customer Complaints

Customer complaints are the normal indication that there is a problem in the distribution system. A record of customer complaints can help the water system identify and locate the problem. As an example, there may be a water system leak which will not surface. A number of low pressure and dirty water complaints in an area can indicate the area where a leak survey should begin. Another use for records of customer complaints is the justification for replacement of facilities. For example, a large number of complaints of dirty water on a dead end main may be justification to loop the main into another part of the system.

B. Water Main Repairs

The repair of water mains and services can be a very complex operation depending upon the conditions found in the field.

1. The location of water main and service leaks can be a major task since many times the water is flowing into underground passages or into sewers and does not surface. Locating the leaks involves a leak survey using sensitive listening equipment. Sometimes the drilling of holes in the pavement over the line of the water main will reveal the location. In some cases, exploratory excavation is necessary to find the exact location of the leak.

2. Once the leak is exposed, the water should be shut down so a detailed examination of the pipe, fittings, or services can be made to determine the extent of the damage. Frequently, the force of the leaking water causes additional damage to adjacent facilities. Because of the water leak, the earth in the trench frequently is saturated with water and unstable. The workmen should exercise extreme caution and install shoring and bracing as necessary since frequent cave-ins occur.
3. Once the extent of the damage is determined, a method of repair must be selected. This may involve a simple repair clamp or may involve the replacement of lengths of pipe, fittings, and valves.

4. The system operator must consider the area to be affected by the shutdown; the personnel, equipment, and materials required; and the amount of time necessary to complete the repair. Sometimes a temporary repair will permit proper planning and gathering of equipment and materials to effect a proper permanent repair with the minimum amount of customer inconvenience.

5. During the repair of the water main, the existing main and the repair materials can become contaminated. Before returning the facilities to service, the facilities must be disinfected, as required by WVCSR Series 64 Title 77.

6. After the repair of the water main, proper support and thrust blocking of the facilities must be provided. Any bends, tees, or end caps must have a thrust block to prevent movement due to water pressure. Because the surrounding earth usually is saturated with water and unstable, it should be removed and replaced with crushed stone or other suitable material. Care should be taken to tamp the crushed stone under the pipe to provide a good solid support. Heavy fittings and valves should be supported on concrete blocks to prevent settlement. The proper backfill of the trench including tamping will minimize the future maintenance of the excavated area.

7. The backfill material and the surface restoration may be specified by the municipality or the West Virginia DOT. A street or highway excavation permit may be required prior to any construction.

8. Upon completion of all repairs and restoration, a record should be made to document what was done. This record can establish the cost of repairs and provide justification for replacement of old and deteriorated facilities. This record can establish the prompt repair and proper notifications of the shutdown.

C. Thawing of Frozen Mains and Services

When water mains and services freeze because they are installed at too shallow a depth or because some of the original cover was removed after initial installation, they must be thawed to restore service. Frequently the freezing exerts sufficient internal pressure to break the pipe and after thawing, the main or service must be repaired.

1. The electrical thawing of frozen mains and services can be performed by special generators or welders; however, there is a danger of damage to customers' homes and electrical appliances and the possibility of causing a fire. For these reasons, the procedures for connecting the wires and disconnecting the customer's meter and any electrical connections must be detailed to limit the possibility of damage and liability for the water system.

2. Water mains and services can be thawed by use of steam generating equipment; however, this requires excavation or access to the facilities. These procedures also should be detailed to prevent injury.
O&M OF LABORATORY EQUIPMENT

In a water treatment plant laboratory, fragile laboratory equipment and delicate instruments are used to detect and precisely measure very small concentrations of contaminants. Therefore, the proper maintenance and operation of the laboratory equipment and instruments is critical. The proper maintenance techniques vary between pieces of equipment which perform the same analyses but are supplied by different manufacturers. As a result, it is important to keep copies of the manufacturers' routine maintenance recommendations and operating manuals for the laboratory equipment in the O&M Plan and to follow these guidelines closely.

This section will outline some general maintenance and calibration procedures for the more widely-used pieces of laboratory equipment and instruments; however, the manufacturers' recommendations should always be referred to first. Recommended laboratory safety equipment will also be discussed. The routine maintenance plan for the water system should include a routine maintenance schedule for the laboratory equipment. The following information may be incorporated into the maintenance schedule.

Glassware
The following procedures should be used in the care and maintenance of lab glassware:
- Glassware should be examined with each use. Items with chipped edges or etched inner surfaces should be discarded. Chipped edges can cut hands, while scratches in the glass decrease visibility through it, possibly resulting in inaccurate analyses.
- Glassware should be cleaned as soon as possible after use to avoid the formation of stains. Do not allow dissolved matter to dry on glassware because future tests may be contaminated if glassware is not cleaned promptly after use.
- Good cleaning procedure involves a thorough washing and two rinses.

Laboratory Support Equipment

Hot Plate
- The heating surface should be cleaned after each use to avoid a buildup of stains and residue;
- Perform routine maintenance as recommended by the manufacturer.

Magnetic Stirrer
- After every use, the surface of the stirrer should be wiped clean. The stirring bar also should be thoroughly cleaned before and after use;
- Routine maintenance should be performed according to the manufacturer's instructions.

pH Meter
The pH meter consists of a sensitive voltmeter, a glass electrode, a reference electrode (made of either calomel or a silver/silver-chloride (Ag/AgCl) compound), and a temperature compensating device. In some units, the two electrodes are mounted in a single unit called a combined electrode. When the electrodes are immersed in the test solution, a circuit is completed through the voltmeter. The meter then converts the voltage change caused by the change in pH to a meter reading expressed in pH units. The temperature compensating device is needed because the pH of a sample is affected by temperature.
Maintenance
Some precautions to be taken in the care and maintenance of the pH meter are:

- Glass electrodes should not be allowed to become dry during periods of inactivity. Follow the manufacturer's instructions for the storage of electrodes, since recommended solutions for short-term storage of electrodes vary with the type of electrode and the manufacturer. Generally, tap water is a better substitute than distilled water, but pH 7 buffer is best for the single glass electrode. Saturated KCl (potassium chloride) solution is preferred for calomel and Ag/AgCl reference electrodes;
- Keep the pH electrodes free of oil, grease, or precipitates. These materials coat the pH electrode and may interfere with pH readings by causing a sluggish response;
- Electrode troubles generally can be traced to a clogged junction which can be cleared by applying suction to the tip or by boiling the tip in distilled water until the electrolyte flows freely when suction is applied to the tip or pressure is applied to the fill hole.
- The electrode may have a crystal buildup and should be flushed with distilled water and refilled with proper solution.
- Routine maintenance should be performed in accordance with the manufacturer's instructions.

Calibration
Proper calibration (standardization) is essential for accurate pH measurements. The purpose of standardization is to adjust the response of the glass electrode to the instrument. When only occasional pH measurements are made, the instrument should be standardized before each measurement. When frequent measurements are made and the instrument is stable, standardize daily. If sample pH values vary widely standardize for each sample with a buffer having a pH within 1 to 2 pH units of the sample. Calibrate the electrode system against standard buffer solutions of known pH.

Because buffer solutions may deteriorate as a result of mold growth or contamination, prepare fresh solutions daily or when only occasional pH measurements are made, the instrument should be standardized before each measurement. When calibrating the pH meter, the following method should be used:

- Before use, remove electrodes from the storage solution, rinse with distilled water, and blot dry;
- Place the electrodes in the initial buffer solution with a known pH, set the meter scale or needle to the pH of the buffer, and adjust for temperature;
- Select a second buffer and bring sample and buffer to the same temperature;
- Remove the electrodes from the first buffer, rinse thoroughly with distilled water, blot dry, and immerse in the second buffer;
- Record the temperature of measurement and adjust the temperature dial on the meter so that the meter indicates the pH value of the buffer at the test temperature;
- Remove the electrodes from the second buffer, rinse thoroughly with distilled water, blot dry and immerse in a third buffer;
- The reading should be within 0.1 pH unit for the pH of the third buffer. If it is not, then look for trouble with the electrodes or potentiometer. Failure to obtain a correct value for the pH of the third reference buffer solution could indicate a
cracked glass electrode, failure to maintain the KCl in the calomel electrode, or oily substances or precipitate coating the surface.

Specific Ion Meter
The unit consists of a millivolt meter and interchangeable electrodes. Each electrode is selectively sensitive to one particular constituent of the water and each specific ion test requires a different electrode. A pH meter with an expanded millivolt scale also can be used with the specific ion electrode.

Maintenance
- Routine maintenance should be performed according to the manufacturer's recommendations;
- When a selective ion probe appears to be malfunctioning, the trouble generally can be traced to a clogged junction which can be cleared by applying suction to the tip or by boiling the tip in distilled water until the electrolyte flows freely when suction is applied to the tip or pressure is applied to the fill hole;
- The electrodes should not be allowed to become dry during periods of nonuse and should be stored according to the manufacturer's instructions.
- The manufacturer's instructions should be followed for refilling the probe assembly with the appropriate solution.

Calibration
- When using the selective ion meter (or expanded scale pH meter), frequently recalibrate the electrode by checking the potential reading of the standard and adjust the calibration control.
- Always use manufacturer's instructions to calibrate the instrument.
- Commercial standards, often already diluted with buffer, are frequently supplied with the meter. The shelf-life of each standard which should be provided by the manufacturer should be checked and the solution discarded when the shelf-life has been exceeded. The stated concentrations of these standards should be verified by comparing them with standards prepared by the analyst for each ion to be analyzed.
- Recalibrate the meter after reading each unknown and also after reading each standard when preparing the standard curve.

Spectrophotometer
The spectrophotometer is an electronic device which measures the concentration of a constituent by measuring the intensity of a color. The unit's main components are a white light source, wavelength control unit, sample compartment, detector, and meter. The white light passes through a diffraction grating or prism to produce single-color light (light of a specific wavelength) which, in turn, passes through the sample contained in a glass tube (cuvette) located in the sample compartment. The ratio of the light emerging from the liquid divided by the light entering the liquid is the percent transmittance (% +). This is sensed by the detector and indicated on the meter. The concentration of a measured constituent is found using a previously prepared calibration curve which must be prepared for each constituent to be measured.

Maintenance
Some precautions to be taken in the care and maintenance of the spectrophotometer are:
- 272 -

- Routine maintenance should be done according to the manufacturer's recommendations and, as a minimum, should consist of keeping the unit clean and replacing the lamp when needed. A supply of replacement lamps should be kept on hand;
- The instrument must be protected from high humidities and water vapor to avoid deterioration of the optical system;
- The matched sample cells should be kept very clean, free of scratches' fingerprints, smudges, and evaporated film residues. Clean sample cells after each use.
- Repair of the instrument requires special skills and, therefore, should be performed by a specially-trained service person.

Calibration
Check sensitivity and accuracy frequently by testing standard solutions to detect electrical, mechanical, or optical problems in the instrument and its accessories. Some recommendations are as follows:
- The preparation of a complete set of standards for each set of samples to be analyzed is unnecessary; however, with every group of samples a reagent blank (made by adding reagent to distilled water) and at least one standard near the sample concentration should be prepared or used to verify the constancy of the calibration curve. This precaution will reveal any unsuspected changes in the instrument, the reagents, or the technique;
- Permanent standards may be subject to fading or color alterations and their validity may depend on certain arbitrary lighting conditions. Therefore, frequently verify the accuracy of these curves or permanent standards by comparing them with standards prepared in the lab using the same set of reagents, the same instrument, and the same procedures as those used for analyzing samples.

Safety Equipment for the Laboratory
Fire Extinguishers - May prevent a large laboratory fire if used quickly on a small fire. All laboratories should have at least one all-purpose fire extinguisher that is capable of putting out small fires. All extinguishers should be checked routinely: visually inspected monthly and a maintenance check performed annually. There are four general types of fire extinguishers. Depending on potential hazards, a laboratory may have more than one type:
- Water-type Extinguisher - Useful for fires with ordinary combustibles like wood, paper, and rags;
- Dry Chemical-Type - Effective against most fires, but particularly those involving flammable liquids and metals, as well as electrical fires;
- Carbon Dioxide-Type - Useful for small fires involving flammable liquids and for limited use around electronic instrumentation and equipment;
- Halon Extinguisher - Good for fires involving electronic equipment because it leaves no residue and does not affect delicate instruments.

Fire Blanket - Its major purpose is to extinguish burning clothing, but it can be used to smother liquid fires in small, open containers. The blanket should be stored in a container mounted on a wall in the lab and arranged in the container so that it can be pulled out easily.
Safety Showers - Are an integral part of laboratory safety to be used in accidents involving acids, caustic or other harmful liquids, clothing fires, and other emergencies. The shower should be located in a convenient, easy-to-reach location in the lab, and the floor space under it should be kept uncluttered. It should be provided with a floor drain and a large, easy-to-grab pull chain ring. The shower, which should be designed so that once it is turned on it stays on until turned off by a separate valve, should be tested regularly.

Eye Wash - Can be bottles with an eye cup or spray nozzle and one liter reservoir used to flood the eye, or they can be permanent plumbing fixtures similar to a drinking fountain. Eye washes should be located at sinks for ease of location in the event of an emergency.

Personal Protective Equipment and Materials - The selection and use of this equipment is governed by the particular tasks to be performed. If it is determined that such are needed, it is the responsibility of the manager and the supervisor to ensure that they are used.

- **Clothing** - Personal clothing creates a barrier between the worker and the hazard. Employees using radioactive materials, suspected carcinogens, and pathogenic materials should change from street to laboratory clothing when entering the work area and should change again when leaving. This not only prevents the transportation of hazardous materials outside the area, but it also permits necessary handling and cleaning of the clothing. A laboratory coat and rubber apron should be available to the employees.

- **Gloves** - Appropriate gloves should be worn. The type of glove depends on the materials to be handled (i.e., rubber gloves should be worn when handling hazardous liquids, surgical gloves for pathogenic material, insulated gloves for handling hot or extremely cold objects, and white cotton gloves to protect instruments).

- **Safety Shoes** - Often safety shoes are required in labs where heavy objects or equipment are to be moved. No open-toed shoes or sandals should be worn in the laboratory.

- **Safety Glasses** - Safety glasses are worn to protect eyes from splashes, flying objects, powders, or ultraviolet exposure. For certain activities, such as working with acid or caustic materials, a face shield should be worn to protect the face as well as the eyes.
PUMPS

Pumps are the heart of a water system. Pumps provide the means for moving water through the system at usable working pressures. In almost all cases, the source is at a lower elevation than the user so the water must be raised to a higher level. Some type of pumping equipment must be used to generate the pressure for raising the water to the higher elevation. Pumps of one type or another accomplish a major part of the work accomplished and energy expended in a water system. There are two basic types of pumps used in water. The most common type of pump is the centrifugal pump. The other type is the positive displacement pump.

Many different types of pumps can be used with the selection depending on the work that needs to be done. One type would be used for transferring water from a well to a tower; another would be better suited for pumping sludge containing a lime byproduct from a softening plant; still another would be used for feeding a chemical into the water for treatment. Among the considerations in selecting a pump are the maximum flow needed in gallons per minute (gpm), the head it needs to pump against, and the accuracy needed for flow control.

Pumps provide the means for moving water through the system at usable working pressures. The operation and maintenance of these pumps are some of the most important duties for many water utility operators. There are two basic types of pumps used in water and wastewater systems. The most common type of pump is the centrifugal pump. The other type is the positive displacement pump.

All pumps are rated by the flow they produce and the pressure they must work against. Centrifugal pumps are used for high flow and low head pressure applications. Booster pumps or primary service pumps are required to move high volumes of water and usually operated at low head pressures (200-300 feet of head for water and as little as 50 feet of head for wastewater applications). Centrifugal pumps are ideally suited to these types of applications and are much more efficient than positive displacement pumps of comparable size. Positive displacement pumps are used for low flow and high-pressure applications. High pressure water jet systems like those used for well screen or sewer line cleaning use positive displacement pumps since pressure in excess of 2500 feet of head are needed and the flows seldom exceed 100 gpm. Sludge pumps and chemical feed pumps are also likely to be positive displacement pumps. Piston pumps, diaphragm pumps, and progressive cavity screw pumps are the most common types of positive displacement pumps.

Another difference between centrifugal and positive displacement pumps has to do with how they react to changes in discharge pressure. When the pressure that a centrifugal pump has to work against changes, it causes the flow from the pump to change. As the pressure increases, the flow from the pump will decrease, and when the pressure drops the flow will increase. Positive displacement pumps do not react this way. The flow does not change when the discharge pressure changes. This is the main reason that positive displacement pumps are used for chemical feeding and sludge pumping. The operator knows that every time the pump strokes, it is pumping the same amount of fluid. This is important if accurate records are to be kept of chemical dosages and pounds of solids that are moving through the system.

System Pressure and Head
Head is a measurement of the pressure or force exerted by the water. Head is expressed in feet to represent the height of the water above some reference point such as a gauge.
Pressure Head is the amount of energy in water due to pressure. The reading of a pressure gauge can be converted to feet of water by multiplying it by 2.31. For example, the gauge reads 52 psi x 2.31 = 120 feet of head (water above the gauge).

Lift, or suction lift, is the vertical distance in feet from the water surface to the pump, plus friction losses in the pipe and fittings between the pump and the foot valve (this will be zero for a submersible pump).

Friction Head loss is the energy that water loses from friction while it is moving in the system through pipelines and valves. When water moves through a pipe, it must overcome resistance caused by friction from contact with the pipe walls and its own turbulence. The amount of friction loss depends on the flow rate, pipe characteristics such as length, size and type of pipe, and on the number and type of pipe fittings.

Head loss can be significant if the pipe surface is roughened by corrosion (pitting), tubercules (crusty corrosion build-up), slime growth, or sediment. The amount of pipe roughness is referred to as the C factor. The higher the C factor, the smoother the pipe. Head loss can also be caused by water suddenly changing direction or velocity as a result of valves, bends, and reducers.

Elevation Head is the vertical distance in feet from the pump to the highest point of the water system, plus friction losses in pipe and fittings between pump and point of discharge.

Total Dynamic Head (TDH) is the total amount of energy that a pump has to deliver to move water from one point to another. Dynamic means the water is in motion rather than static. For example: the well pump has to lift water from a 150 ft pumping level and push it 120 ft up to the storage tank. Not factoring friction head loss, the total dynamic head would be 150 ft suction lift + 120 ft discharge head = 270 ft TDH.

Diaphragm pumps – the amount of chemical fed is determined by either adjusting the length of the stroke or the number of strokes per minute.

It is recommended that your diaphragm pump be equipped with a four function valve. The functions of this valve are:
1. Anti-siphon (automatic): prevents siphoning when pumping downhill or into a vacuum.
2. Backpressure (automatic): supplies approximately 25 psi backpressure to prevent over pumping when little or no system backpressure is present.
3. Pressure relief (automatic): if the discharge line is overpressurized, the valve opens sending the chlorine solution back to your supply tank.
4. Line depressurization (manual): by pulling both knobs, the discharge line will drain back to your supply tank.

The head of a chemical feed pump should generally be above the top of the liquid solution in the solution barrel, to prevent possible siphoning of the chemical that could create a potentially dangerous overfeed situation. It is also recommended to have a back-up pump.

Centrifugal pumps – are widely used in the water industry and consist of a pump casing and an impeller mounted on a rotating shaft. A motor turns the shaft, spinning the impeller. The impeller
creates centrifugal force, which throws water into the outer casing or volute. Water is directed into the discharge.

- Vertical turbine pumps – commonly used for well installations and booster pumps. They are capable of producing high capacities at high head.
- Submersible pumps – common for well installations. The entire pump and motor assembly is submerged in water. The motor is mounted below the bowls (impeller housing) so the pump does not have as long a pump shaft as the turbine.

Centrifugal pumps major parts include:

- Casing – the housing that surrounds the impeller, often called a bowl, for turbine pumps.
- Shaft – the rod the impeller is mounted on and is turned by the motor.
- Impeller – rotating bladed disc that gives force to the water being pumped. Design can vary (enclosed, open, semi-enclosed). Design used depends on pumping requirements.
- Wear rings – brass or bronze rings placed on the impeller or casing to control leakage from discharge to suction side.
- Bearings – support and guide the shaft.
- Shaft seals – packing or mechanical seals are used to prevent air from being sucked into the pump along the shaft and to control water leakage along the shaft from the impeller.
- Motor – provides power to turn the impeller.

Pump Cavitation

Pump cavitation is the formation and collapse of gas pockets or bubbles on the blade of an impeller or the gate of a valve, causes the pump or valve to vibrate and sounds like chattering marbles. Commonly occurs in pumps when the pressure at the pump inlet drops below the pressure of the water being pumped. Cavitation may cause the formation of pits on the impeller and the eventual wearing away of the impeller and can be caused by allowing intakes to become clogged or by using a pump that discharges more water than it is designed to pump. To prevent cavitation:

- The intake of the pump must remain clear.
- If pump discharge is excessive, throttle with discharge valve.
- Coat the impeller and volute with epoxy-metallic materials.

Water Hammer occurs when moving water suddenly stops, such as by closing a valve too fast. Water oscillates in the pipe, causing a loud banging or hammering sound. Fluctuating pressures can damage piping and connections.

Pump Maintenance

Major areas of maintenance concern:

- Couplings must be properly aligned.
- Inspect and lubricate motor/pump bearings on a regular basis.
 - Reduce friction and wear to moving parts.
 - Prevent corrosion by sealing out dirt and contaminants.
 - Lubricating water should be of a quality equal to or greater than the pumped water.
o Too much lubrication – high heat can result; too little lubrication – excessive wear can result.
 o Wrong kind of lubricant – may contaminate potable supply or may not provide adequate wear protection.
 o Contamination of lubricant – may result in excessive wear and high heat.
- Seals – mechanical or packing type.
 o Packing type must be allowed to leak a small amount (20 drops/min) for lubrication.
 o Mechanical type does not normally leak water.

Motor Maintenance:
 • The motor should be properly lubricated.
 • Motor should be kept clean, dry, and cool.
 • Motor guards/ventilation screens must be in place.

Positive Displacement Pump
The positive displacement pump is commonly used to feed chemicals into the water or to move heavy suspension, such as sludge.

Piston Pump
One type of positive displacement pump consists of a piston that moves in a back and forth motion within a cylinder. It is used primarily to move material that has large amounts of suspended material, such as sludges, in wastewater or for trash pumps for pumping mud. The cylinder will have check valves that operate opposite to each other, depending on the motion of the piston. One check will be located on the suction side of the piston and will open as the piston moves back, creating a larger cylinder area. After the piston has reached the longest stroke position, the motion of the piston will reverse. This action will open the discharge check valve and close the suction check. The contents of the piston are then discharged to discharge piping. After the discharge, the motion of the piston will reverse and the suction stroke will begin. This action will take place as long as power is applied to the pump.

Diaphragm Pump
Another type of positive displacement pump used in the water industry is the diaphragm pump. This pump operates the same way as the piston pump except that, in place of a piston that moves in a cylinder, a flexible diaphragm moves back and forth in a closed area. The check valves operate in the same fashion as they feed or move liquid in the pump. This type of pump is used when high accuracy is required. Most of these pumps are operated by the use of a solenoid that will pulse a set number of times per minute. This pulsing, which is termed frequency, is variable and can be set by the operator or by a control signal. The length of the stroke can also be adjusted in order to vary the size of chamber that fills with liquid.

Peristaltic Metering Pump
A peristaltic metering pump is a positive displacement pump that uses the alternating waves of contraction and dilation of a plastic tubing to move liquid through the tubing into the water line. (This is the peristaltic principle similar to the action of the large intestines in the human body). A rotary gear rolls over the plastic tubing creating a suction on the solution side of the feeder. Thus, fluoride solution is drawn in one end of the tube and is forced out the other end.
The peristaltic pump is adjusted by means of a dial ring and the size of the tubing. At full setting of the dial, the rotor turns continuously. At lower settings of the dial, the rotor starts and stops, moving at slower intervals. At the lowest setting, the rotor moves in very small jerks. The tubing size ranges from 1/8 inch to ¼ inch with the standard size tubing being 3/16 inches. The tubing also comes in low pressure (up to 20 psi) and high pressure (up to 100 psi) types. The high pressure type tubing is used for most pumps designed for fluoridation.

The peristaltic metering pump is self-priming and will not be damaged by the freezing of the solution being pumped. The range of feed is from 0.5 gallons per day up to 85 gallons per day. The tubing is designed to last from one to 2 years, depending upon usage. Proper installation of the correct type of tubing is very important.

Centrifugal Pumps
Because it delivers a constant flow of water at a constant pressure for any given set of conditions, the centrifugal pump is ideal for delivering water to customers. Most well pumps are centrifugal pumps. They are ideal for use in the distribution system since they do not produce pulsating surges of flow and pressure.

This pump operates on the theory of centrifugal force. As the impeller rotates in the pump case, it tends to push water away from the center of the rotation. As the water is pushed away from the center of the impeller, additional water is pulled into the eye, or center, of the impeller. The water that has been pushed to the outside of the impeller is removed from the pump through the discharge piping. This water will have a pressure that is determined by the pitch of the impeller and the speed at which the impeller is turning.

Priming
Never start a centrifugal pump unless it is primed. Priming a pump means that the volute is completely filled with water and all air removed.

Vibration
Centrifugal pumps should operate smoothly. Excessive vibration caused by loose foundation bolts, a broken impeller, worn bearings, misaligned shafts, or similar mechanical failure can damage the pump. If a centrifugal pump vibrates, it should be shut down and checked.

Water Hammer
Water hammer results when the closing of a valve suddenly stops such as a moving column of water. A pressure wave develops at the valve and travels back upstream to the water source. Pressures developed by water hammer can be very high for a brief instant before the pressure wave is reflected back upstream. Pressure dissipates in an oscillating manner as the wave travels back and forth in the closed pipe, causing a loud banging or hammering sound. Although brief, the pressures can be high enough to damage the system piping. Installation of a pump control valve and slow operation of downstream valves may prevent water hammer.

Cavitation
A noisy pump should be checked to see if the problem is cavitation. Modifications to the system may be necessary, such as reducing suction lift to decrease net positive suction head (NPSH) at the pump, modifying suction piping, or selecting a different pump with a lower required NPSH. Such changes often require the assistance of an experienced engineer.
Although today’s diaphragm pumps are more sophisticated, better valves, diaphragms, drive mechanisms, etc. than years ago; they still require a basic understanding for a successful program. Peristaltic pumps on the other hand are initially simpler to use, and require less experience to operate under adverse conditions.

Diaphragm Metering Pumps

Pros
- Well maintained a diaphragm metering pump cost less to operate over time.
- Diaphragm metering pumps are more energy efficient, using more motor torque on the forward (power) stroke, but far less on the back stroke.
- Overcoming line pressure is easier with properly sized diaphragm metering pumps.
- Less danger of leakage - Poorly maintained, diaphragm metering pump may lose its prime, but seldom leaks, or damages area.

Cons
- Solution being pumped needs to be clean – diaphragm metering pumps operate best when the solution being pumped is clean, free from particulates. The reason; diaphragm metering pumps have check valves in the suction and discharge side of the pump head. If either set of check valves becomes fouled (dirty), the pump will first lose its ability to meter accurately, and finally loss of prime will occur.
- Difficult to prime against pressure – These pumps prime best when there is little to no back pressure. Some pumps are fitted with a bleed valve to aid in this challenge.
- Difficulty priming with dirty check valves – Diaphragm pumps prime best when the valves (check balls) are clean and there is little to no back pressure, and the diaphragm stroke is on full or maximum setting.
- Difficulty priming when the stroke (feed rate adjustment) is on a low setting. Most diaphragm metering pumps has a diaphragm stroke (feed rate) adjustment, and some also have a motor speed adjustment. Priming is best achieved when the stroke adjustment is above the 60% area. These adjustments can be confusing, try to minimize your variables as much as possible. Avoid adjusting the diaphragm stroke length to low, the pump loses efficiency. Keep your diaphragm stroke above 40% if possible; most pumps are just more efficient with longer stroke lengths.

In summary, diaphragm metering pumps will require a bit more knowledge about the pump valves, proper priming and adjustment characteristics. Understanding the pump and working within its normal limits will assure of a successful program.

Peristaltic Pumps

Peristaltic pumps are initially easier to use because they are more forgiving than diaphragm metering pumps.

Pros
- Work well with high levels of particulate in solution (undissolved solids) being pumped. There are no check balls to foul within the pump tube.
• Feed rates are less affected by pressure, or nature of chemical.
• Are superior at priming, excellent suction.

Cons
• Constant squeezing of pump tune weakens (degrades) the tube, and feed rate is slowly diminished.
• Squeezing the pump tube requires the drive motor to be under a constant load, using more power.
• When neglected (pump tube not changed), or injection point not serviced, pump tube may leak and could damage the pump, or worse.
• Pump tubes begin to wear the moment the pump is started, and continue degrading until worn out completely. Most manufactures rate the tubes in hours. Users must be cognizant of total number of hours the pump has operated. This is a common problem with peristaltic pump users, generally operators under estimate how many hours the pump has operated.

Areas Concerning both Diaphragm and Peristaltic Metering Pumps
• Make sure the pump wetted parts are compatible with the chemical you are pumping. The pump head, valves and diaphragm are commonly referred to as, “wetted end”, and need attention; make sure the wetted end is compatible with the chemical being pumped. Peristaltic pumps make sure the pump tube, and standard fittings are compatible with the chemical. Manufacturers will list the materials that make up wetted parts. The customer needs to do some basic research on chemical compatibility, no one single material works with everything.
• Read the pump curve, the pump output will not be the same at atmospheric pressure, as it will be at 50 psig, as the line pressure increases the feed rate will decrease. A pump curve will help, but remember the pump curves provided are all done in the laboratory, pumping pure water. The solution will have a different viscosity, and specific gravity than water, and will affect output.
• It’s best if to check the output by measuring from a graduated measuring cylinder from the suction tubing. By doing it this way, the user will know how the chemical (viscosity, specific gravity and line pressure) is actually feeding. This is the best way to calibrate the pump.

Diaphragm metering pumps excel at pumping clean, aggressive chemicals into high-pressure systems, and require very little maintenance. A variety of wetted parts are available for chemical resistance. Diaphragm pumps, however, can lose their prime and can be difficult to prime, especially if the fluid is dirty or contains trapped gases.

Peristaltic metering pumps excel at pumping dirty fluids that contain trapped gases or particulate matter into lower pressure systems. Newer peristaltic pump designs are capable of pressures to 100 psig. Pump tube material options, however, can be limited, and chemical resistance can be a factor. In addition, peristaltic pumps will require periodic changing of the pump tube.

A good understanding of both the installation requirements, and the pump’s operating parameters and maintenance requirements, are vital to choosing the best pump for the application.
PUMP HYDRAULICS

When a pump is installed, it is important to make sure that it is designed to pump the proper amount of water against the correct head pressure. Pumps that are not properly sized for a specific application will fail to give satisfactory performance. The majority of complaints regarding pump performance usually result from placing a pump in an application that requires it to operate outside its designed flow or pressure ratings.

In order to get the right pump for the job, you must know not only how much water must be moved, but also how much pressure it is going to have to pump against. Determining how much water needs to be pumped is the easy part. A pump dealer may have fifteen different pumps that are rated for 500 gpm. Some of them will pump 500 gpm against 500 feet of head and some will only pump 500 gpm against 50 feet of head pressure. The trick is figuring out how much pressure the pump will have to work against.

The following steps should be taken when sizing a pump:

1. **Determine the gpm:**
 The pump should be able to meet the peak daily demand that will be encountered.

2. **Determine the suction head:**
 The suction head is the vertical distance from the surface of the water supply to the centerline of the pump. If the water supply is below the centerline of the pump, the distance is negative suction head, or suction lift. If the water supply is above the centerline of the pump, it is known as positive suction head. The illustration shows both positive and negative suction heads of 20 feet. Atmospheric pressure and the ability of the pump to pull a vacuum limit negative suction head. At sea level the absolute maximum negative suction head is 33.8 feet. For most pumping applications negative suction heads should never exceed 20 feet.

3. **Determine the discharge head:**
 The discharge head is the vertical distance from the centerline of the pump to the overflow of the storage tank.

4. **Determine the total head:**
 a. The total head can be determined by adding the a negative suction head to the discharge head; or
 b. By subtracting a positive suction head from the discharge head

5. **Determine the friction loss:**
 The total head represents the vertical distance that the pump must lift the water. The horizontal distance the water must move will also impact the pressure against the pump. As water moves through a pipe, it rubs against the inside of the pipe. This creates friction that will reduce the available pressure at the end of the pipe. A pump must produce a pressure higher than total head to overcome this friction loss and still move the required amount of water. There are four factors to consider when determining friction loss. They are the size of the pipe, the flow through the pipe, the length of the pipe, and the “C factor”. The “C factor” is also known as the coefficient of friction. It represents the roughness of the inside of the pipe wall.

6. **Determine the Total Dynamic Head**
 Once the friction loss has been determined, it is added to the total head to calculate the total dynamic head. The total dynamic head (TDH) is the head at which the pump should be rated. The pump can now be sized according to the gpm demand and the total dynamic head that it must work against.

PUMP CHARACTERISTICS CURVES

Every pump has certain characteristics under which it will operate efficiently. These conditions can be illustrated with pump characteristic curves. The pump curve should show:
The head capacity curve
The brake horsepower curve
The efficiency curve

The graph may contain a curve labeled “NPSH” (Net Positive Suction Head) instead of a BHp (Brake Horsepower) curve. NPSH represents the minimum dynamic suction head that is required to keep the pump from cavitating.

To use the pump curve:
1. Start at the particular head pressure that is desired and then travel across the chart to the point where it crosses the head capacity curve.
2. Drop a straight line from this point down to the bottom of the chart to determine the gpm output at that particular head pressure.
3. The brake horsepower can be determined by starting at the point where the vertical line crosses the horsepower curve and going across to the right side of the chart. Use the same procedure for NSPH if it is used instead of BHp.
4. The efficiency of the pump at this flow and pressure is determined by starting at the point where the vertical line crosses the efficiency curve and going over to the right side of the chart.

Shut Off Head
The highest head pressure that the pump will develop is called the “shut off head” of the pump. When a pump reaches shut off head, the flow from the pump also drops to 0 gpm. This is a valuable piece of information for conducting a quick check of the pump’s performance. If the pump cannot generate its rated shut off head, the pump curve is no longer of any real value to the operator. A loss of shut off head is probably caused by an increase in recirculation inside the pump due to worn wear rings or worn impellers.

There is another factor that might affect the shut off head of the pump. The pump curve assumes that the pump is running at design speed. If a pump that is supposed to spin at 1750 rpm and it is only turning at 1700 rpm, the shut off head will be lower than the pump curve too. However, if the pump speed is checked with a tachometer and found to be correct, the wear rings or impellers are probably in need of repair.
CHEMICAL FEED SYSTEMS

Chemical feeders are necessary to assure that the proper amount of each chemical is added to the water on a continuous basis. Each feeder must have a storage bin, a device that feeds the chemical into a solution tank where it is dissolved, and a delivery system to add the chemical at the proper point in the treatment process. Chemical feeders are either gravimetric or volumetric. Gravimetric feeders usually have a conveyor that uses a set of scales to maintain a constant weight of material on the belt. They are not used in water treatment much because most treatment chemicals are corrosive and will damage the scale mechanism. Volumetric feeders are the most common. They include auger feeders and positive displacement metering pumps.

The actual feed device may be a screw auger, a rotating disc, an oscillating shelf, or a variable speed conveyor belt. The feeder control may be calibrated in pounds per day, but usually the scale simply reads from 1 to 10 or 1 to 100. The manufacturer may provide a chart that can be used to determine what the feed rate is at a given setting. If not, the operator can calibrate the machine manually. This should be done periodically to determine if the machine is in need of cleaning or maintenance due to clogging or belt slippage. The first step is collecting and weighing the amount of chemical fed in one minute at several different settings. These figures multiplied by 1,440 minutes per day will give pounds per day feed rate. These points can be plotted to create a straight-line graph that can be used to accurately set the feed rate.

Chemical feed pumps are small positive displacement pumps. They are usually diaphragm pumps, but peristaltic pumps are becoming popular for very small systems. Peristaltic pumps consist of a circular pump head that contains a piece of flexible tubing and a roller assembly. As the pump motor turns the roller, fluid is squeezed out of the tube. These pumps can meter flows as low as 3-4 drips per minute (0.1-0.15 mL/min).

The diaphragm feed pump consists of a diaphragm driven pump chamber, and two check valves. The check valves, that provide the one-way flow through the pump, can get clogged with lime deposits. The strainer on the pump suction line should be located several inches above the bottom of the solution tank to prevent lime and grit from being drawn into the pump and fouling the check valves.

If the check valves get fouled, the pump will not pump any solution. Flushing the line with clean water or a weak acid, like vinegar, may also correct the problem. In severe cases the valves may have to be disassembled and cleaned. Always make sure the pump is primed before putting it back into service. It may also be advantageous to locate the pump so that it has a positive suction head.

Metering pumps are essentially small pumps used to feed a measured quantity of liquid during a specific time. The major requirement for metering pumps is the accuracy and constancy of delivery. The term “metering pump” is also known as “chemical feed pumps,” “solution pump,” “feed pump,” and “solution feeder.”

Positive displacement pumps are the most common type of metering pumps used in the water industry because of the high accuracy of delivery. A positive displacement pump draws in and expels liquid as a result of the alternate filling and emptying of a closed chamber. It delivers a specific volume of liquid for each stroke of a piston or diaphragm. Very few metering pumps
deliver replicate volume under all conditions, for such factors as pressure and viscosity can affect the volume displaced by the driving member of the pump.

The criteria used in selecting a metering pump are capacity, corrosion resistance, pressure capability, accuracy, and durability. One of the most important of these factors is the amount of chemical to be fed. Remember that most pumps perform most accurately near mid-range of both stroke length (stroke) and stroking frequency (speed) and should be selected accordingly.

The volume of solution pumped by most metering pumps is adjusted by both stroke, which determines the volume of liquid delivered per stroke, and speed, usually expressed in strokes-per-minute (SPM). Metering pumps usually have nameplates or a chart showing their pump capacity. If this unfortunately, is not available, then the pump must be calibrated by adjusting the pump to various settings and measuring the amount of solution pumped during the measured time intervals. This should also be done periodically to verify the delivery rate of a metering pump or to make adjustments when the feed rate is too high or too low.

Simply measuring the output from the discharge outlet of the metering pump is unsatisfactory, since even the output of so-called positive displacement pumps varies with pressure. One acceptable way is to measure the volume of the liquid being pumped, preferably in a graduated cylinder (without losing prime or spilling any solution). Feed for a timed interval, withdraw the suction tube and note the volume of solution remaining. The difference will represent the volume fed during the measured interval. By adjusting the feeder to various scale settings, a calibration chart or curve can be developed that will be representative of the pumping conditions and the chemical pumped at the time.

The following is an example of how to calculate the feed rate of a metering pump:

A pump’s output (gal/min) is determined by dividing the maximum capacity (gal/day) by 1,440 (minutes/day). For example, a 30 gallons per day (gpd) pump at maximum stroke and a speed of 125 strokes per minute (spm) will pump 0.000167 gallons per stroke (gps).

\[
30 \text{ gpd} \div 1440 \text{ mpd} = 0.0208 = \text{gpm} \div 125 \text{ spm} = 0.000167 \text{ gps}
\]

With this value and the pump’s actual speed setting (spm), you can calculate the pump’s output at its rated pressure. A 30 gpd pump set at 50 spm:

\[
50 \text{ spm} \times 0.000167 \text{ gps} \times 1440 \text{ mpd} = 12.02 \text{ gpd}
\]

Reducing the pump’s stroke, will reduce the pump’s output. If the pump’s stroke is then reduced to 50%, the 12.02 gpd will be reduced to 6.01 gpd.

\[
12.02 \text{ gpd} \times 50\% \div 100 = 6.01 \text{ gpd}
\]
ELECTRIC MOTORS

Very few operators do electrical repairs or trouble shooting because this is a highly specialized field and unqualified operators can seriously injure themselves or damage costly equipment. For these reasons the operator must be familiar with electricity, know the hazards, and recognize his own limitations when working with electrical equipment. Most water systems use a commercial electrician for major problems. However, the operator should be able to explain how the equipment is supposed to work and what it is doing or not doing when it fails. Electric motors are commonly used to convert electrical energy into mechanical energy. A motor generally consists of a stator, rotor, end bells, and windings. The rotor has an extending shaft, which allows a machine to be coupled to it. Most large motors will be three phase motors rated from 220 or 4160 volts.

Vertical turbine line shaft pumps will often have a hollow core or hollow shaft motor. The rotor is hollow and the motor shaft can slide up and down to allow adjustment of impeller clearance. This lateral adjustment is accomplished by raising and lowering the shaft with the adjusting nut on top of the upper bearing.

Phases

The term “phase” applies to alternating current (AC) systems and describes how many external winding connections are available from a generator, transformer, or motor for actual load connections. Motors are either single-phase or three-phase.

Single Phase Motors

Single-phase motors are normally operated on 110-220 volt A.C. single-phase systems. A straight single-phase winding has no starting torque so it must incorporate some other means of spinning the shaft. A single-phase motor requires a special start circuit within the motor to make sure it runs in the right direction. Several different types of starter windings are available in these motors. Single-phase power leads will have three wires, like a three-prong extension cord. The third wire is the neutral wire.

Three Phase Motors

Three-phase systems refer to the fact that there are three sets of windings in the motor and three legs of power coming in from the distribution system. This type of motor is used where loads become larger than single-phase circuits can handle. With three legs to carry power, more amps can be delivered to the motor. Three phase motors are the most common types used in water and wastewater systems. Three major types of three phase motors are the squirrel cage induction motor, synchronous motors, and wound rotor induction motors.

Squirrel cage induction motors are widely used because of its simple construction and relative low maintenance requirements. The windings are stationary and are built into the frame of the motor. The power supply is connected to the windings in the stator, which creates a rotating magnetic field. The rotor is made up of bars arranged in the shape of a cylinder and joined to form a “squirrel cage.” Squirrel cage induction motors make up approximately 90% of all motors used in industry today.

Three-phase motors do not use a start circuit. The direction of rotation is determined by how the three leads are wired to the motor. If any two of the leads are switched, the motor rotation will be reversed.

Single Phasing

Anytime a lead becomes grounded, a dead short develops, or one of the contacts opens in a three-phase motor, single phasing will result. When this occurs, the speed of the motor will drop and it will begin to overheat. The single phase will draw too many amps and it will quickly burn.
up. When single phasing occurs while the motor is not running, it simply will not start up again. Special circuit protection is available that will shut the motor off if single phasing occurs.

Circuit Protection
Motors need to be protected from power surges and overloads. Fuses and circuit breakers are designed to open the circuit when the current load threatens to damage the motor. Fuses are generally sized at 120-150% of motor capacity. Circuit breakers can be reset when they trip, instead of being replaced like a fuse. Circuit breakers can react faster than fuses and are usually sized closer to the current rating of the motor.
Maintenance is one of the most important and most often neglected tasks in water system operations. When money gets tight maintenance is often one of the first things to go. More and more water systems are finding that cutting maintenance to save money is false economy. Almost without fail, the cost to repair damage caused by lack of maintenance is much higher than the cost to maintain the equipment.

All systems should develop a preventive maintenance program. A preventive maintenance program allows virtually all maintenance to be performed during normal operating hours. Emergency maintenance is reduced to a minimum.

In maintaining a pump and motor there are three major areas of maintenance concern: the couplings, the bearings, and the pump staffing box.

Couplings

Close-coupled pumps have no coupling with which to be concerned. All other pumps, in which the pump and motor are separate units, must have some device to attach the motor to the pump. Couplings are used for this purpose. Couplings perform some or all of these functions:

- Connect the motor to the pump to allow the motor to turn the pump.
- Flexible couplings allow for some pump to motor misalignment.
- Because of slack (called internal clearance) in bearings, the pump and motor shafts can move away from and toward each other. Couplings allow for this to happen without damage.
- Vibration can damage equipment. Couplings can reduce the amount of vibration transmitted from one piece of equipment to another.
- Electricity can flow from the motor to the pump causing pitting in bearings and their premature corrosion and failure. Couplings can be used that will insulate the pump shaft against stray current.
- Couplings absorb the torque created when the motor starts.

Energy transfer and compensation for misalignment are the two most important functions performed by a coupling. There are two types of couplings, rigid and flexible couplings. Rigid couplings do not compensate for any misalignment. Flexible couplings allow for small amounts of pump to motor misalignment.

Coupling Alignment

The key to maintaining a flexible coupling or rigid coupling is to monitor the alignment between the drive unit and the pump. Neglect or completely overlooking alignment will certainly result in early failure of the coupling, and result in damage to the motor and pump. The types of misalignment that may be encountered are: angular and parallel.

Angular Misalignment

Angular misalignment is the type most likely to cause severe damage to the pump and motor. A characteristic of this type of misalignment is that the motor is set at an angle to the pump. This angle can either be to the left or right, up or down. If the center lines of the motor and pump were extended, they would cross each other, rather than run parallel. When aligning a pump and motor, angular alignment should be checked first.
Parallel Misalignment
Parallel misalignment occurs when the two center lines are parallel, but they are not in the same plane vertically or horizontally. Generally, parallel misalignment results in less vibration than angular misalignment. Parallel misalignment is also the easiest to detect. If parallel misalignment is beyond the tolerance limits, it is difficult, if not impossible, to join the coupling halves.

Combination Misalignment
The third type of misalignment encountered is combination misalignment. As the name implies, the motor is misaligned angularly, and at the same time is either displaced to the right or left, or on a different level than the pump.

In order to align the pump and motor, it is necessary to let either the pump or motor remain still, while moving the other to bring it into line. It is best to align the motor with the pump. Moving the pump will put stress on the piping system. As the pipe tries to pull back to relieve the stress, the pump will be shifted. If the pump is left in place while the motor is shifted, this problem will not occur.

How to Use a Dial Indicator* to Determine Pump & Motor Shaft Runout
(Determine if shaft is straight or bent).
1. Give the pump and motor shafts a rough, “eyeball,” alignment.
2. Check the pump and motor shaft for run out by placing the dial indicator clamp on the pump shaft.
3. Place the dial indicator in contact near the end of the motor shaft, insuring that the scale is reading off zero.
4. Rotate the dial indicator scale until it reads zero.
5. Rotate the pump shaft until the dial indicator gives its highest reading.
6. Put a mark on the pump shaft to insure this point on the pump shaft remains at the top.
7. Repeat this procedure on the motor shaft.
*(Dial Indicators are available from many machine shop supply houses and auto parts stores).

How to Use a Caliper to Determine Angular Misalignment Between a Motor & Pump
1. Measure the distance between the coupling halves at the top of the couplings.
2. Mark the coupling halves where the measurement was taken.
3. Rotate the coupling 90 degrees and measure again.
4. Rotate the coupling 90 degrees so that the marks are now at the bottom, and measure again.
5. Rotate the coupling 90 degrees and measure again.
6. If the motor is out of alignment horizontally, simply shift the motor toward the side on which the greatest gap is found. If the greatest gap was found at the top of the coupling, add shims to raise the rear of the motor.
7. If the greatest gap was found at the bottom of the coupling, add shims to raise the front of the motor. The shim thickness should be one half as thick as the gap is wide.

How to Check a Pump and Motor for Angular Misalignment Using a Dial Indicator
1. Give the pump and motor shafts a rough, “eyeball,” alignment.
2. Attach the dial indicator to the pump half of the coupling. Attach a block to the motor coupling half, contacting the dial indicator in such a way that the scale reads off zero.
3. Rotate the coupling halves so that the dial indicator is in the three o’clock position, reading the dial indicator.
4. Rotate the coupling halves so that the dial indicator is on the six o’clock position, read the dial indicator.
5. Rotate the coupling halves until the dial indicator is at the nine o’clock position; read the indicator.
6. Shift the motor or add shims to correct the alignment.
7. Re-check the alignment.

How to Use a Straight edge to Check for Parallel Misalignment
1. Lay a straight edge across the top of the coupling halves, insuring it is parallel to the shafts. Check for clearance using a thickness gage.
2. Mark the point at the top, where this measurement was made.
3. Rotate the coupling until the mark is in the 3 o’clock position. Place the straight edge at the marks, insuring the straight edge is parallel to the pump and motor shafts. Using the thickness gauges, measure any gap between the straight edge and either coupling.
4. Check the coupling in the 6 and 9 o’clock positions.
5. Make any corrections necessary in the motor’s position; re-check.

How to Use a Dial Indicator to Check for Parallel Misalignment
1. Attach the dial indicator to the pump half of the coupling.
2. Adjust the dial indicator to read off zero.
3. Rotate the dial indicator to read zero.
4. Check the dial indicator readings in the 12, 3, 6, and 9 o’clock positions.
5. Make any adjustments in the motor position and re-check the alignment.

Motor Maintenance
Maintenance of electric motors requires that extreme care be exercised to avoid harm to the person performing the maintenance and to avoid damage to the motor. When performing maintenance on motors be certain to always turn off the power supply. Also lock out the power supply to prevent someone from accidentally turning the power back on while you are working on the equipment.

Exterior maintenance of electric motors is fairly simple. It is a matter of keeping the exterior clean and painted. Do not allow the paint finish to deteriorate to the point that the motor’s exterior begins to corrode. Do not allow grease, dust, and dirt to build up on the motor body.

Do not allow paint to build up on the motor body. All of these things prevent the motor from radiating heat. Heat will build up and shorten the life of the motor. Blocking ventilation will also cause heat to build up. When painting a motor, be certain that the data plate is not damaged or covered with paint. The data plate should be readable.

A routine lubrication schedule should be set up and followed. For more information, consult the manufacturer’s literature. The manufacturer’s literature will have information on what type of lubricant, how much lubricant to use, and how often the equipment should be relubricated. Maintenance of the insulation in the inside of a motor is an important and difficult task. In order
to maintain the motor insulation, keep it clean, dry and cool. The insulation should be free of contaminants such as dust, salt, chemicals, lint, and oil. To keep the inside of a motor clean and in working order, you need to:

- Select the motor enclosure type that is best suited to environmental conditions under which the motor must operate;
- Remove the source of contamination, if possible;
- Clean contamination from the windings; and,
- Clean the exterior and keeping the ventilation openings clear.

Insure that the insulation is kept dry. Some insulations are porous and can absorb water, causing failure to the motor. Dirt and other contaminants attract moisture. Proper enclosures can reduce or eliminate most moisture problems. In very cold or humid areas, it may be necessary to provide heaters to keep motors dry.

Contamination problems are generally attributable to the shoddy greasing practices or to water contamination from excessive packing leakage or flooding. Lubricants and all equipment associated with relubrication should be cleaned immediately after use, and inspected before use to insure it is clean. All grease fittings should be wiped off thoroughly with a clean cloth towel before attaching the grease gun.

An oil lubrication system is the simplest system to monitor. It requires the person performing maintenance to monitor and oil level frequently, and add oil to the machinery as needed.

Motor Lubrication

Lubrication is one of the simplest maintenance procedures to perform. It is also the maintenance procedure which is most often neglected or done incorrectly. It is estimated that about 70-80% of all bearing failures in water and wastewater systems are caused by improper lubrication. Lubrication failures will normally fall into one of four categories:

- Too much lubricant;
- Too little lubricant;
- Wrong kind of lubricant; and
- Contamination of lubricant.

Too much, too little, and the wrong kind of lubricants are problems which are easily solved. Before relubricating the pump and motor, consult the manufacturer’s literature. It will tell how much lubricant to use, how often to lubricate the equipment, and give recommendations as to which brands are compatible with the equipment and service.

Lubrication oil should be changed at the recommended interval. If for some reason the oil should become overly hot in operation, more frequent changing will be required. When choosing an oil the most important characteristic to look for is the viscosity. Viscosity, in simple terms, is a fluid’s resistance to flow. Consult the manufacturer’s handbook to determine the correct viscosity for the pump or motor. If the viscosity is too high the machinery will have to work harder to turn, especially in cool weather. If the viscosity it too low, the bearing will break through the oil film and wear prematurely, and also build up heat.

To relubricate a pump or motor, using oil, follow this procedure. As in all maintenance procedures, consult the manufacturer’s literature before doing the work.
How to Change the Oil in Pumps & Motors

The manufacturer’s literature will indicate the proper type of oil, the correct amount, and any special information you may need. The oil should be brought up to operating temperature just prior to changing.

1. Turn off the equipment and lock out the power supply;
2. Remove the drain plug and allow all the old oil to drain out;
3. Replace the drain plug and refill with new oil until the oil level indicator shows the proper levels; and,
4. Return the equipment to service.

Because of adverse reactions due to different additives, DIFFERENT BRANDS of oils should never be mixed. If you must change brands of oil, follow this procedure:

1. Turn off and lock out the power supply;
2. Remove the drain plug, and allow all the old oil to drain out;
3. Replace the drain plug and fill to the proper level with the new brand of oil; and,
4. Operate the equipment until it reaches operating temperature; then repeat drain and fill procedure.

How to Change the Oil in Pumps & Motors

Relubrication procedures using greases depend on the type of fittings furnished. Most grease lubricated equipment is equipped with an alemite grease fitting, to which a grease gun can be attached. Remove the grease relief plug from the pump or motor housing during the relubrication process. This will allow the old grease to be flushed from the bearing housing. If the equipment does not have a grease relief plug, it is very important that the manufacturer’s instructions be followed exactly. If the equipment is equipped with a grease relief port, relubrication can be accomplished with little fear of accidental over lubrication. Before relubricating with grease, the manufacturer’s literature should be consulted to determine the correct brand, hardness, and amount of grease to be used. Some of the pieces of equipment equipped with grease fittings are also equipped with grease relief plugs.

Mechanical Seals

Water leakage must be controlled at the point where the shaft exits the pump body/volute. In addition to controlling the water that is trying to leak out, we can, at the same time, control air that is trying to get in. There are two ways to control this leakage: through the use of mechanical seals or pump packings.

There are a great variety of brands and styles of mechanical seals from which to choose. Mechanical seals offer several advantages over mechanical packings. Properly installed, mechanical seals control leakage so well that they appear not to leak at all. This eliminates the mess and hazard usually associated with packings—that of having water leaking all over the floor.

Mechanical seals require no maintenance, as packing does. Probably the greatest advantage of mechanical seals is that they put very little demand for extra electricity to drive the pump. They are built with a high degree of precision and require extreme care and skill in installation. The pump must be at least partially disassembled to install or replace a mechanical seal. When they fail, they tend to fail completely and require immediate attention.
There are three key points to remember when deciding whether or not to use a mechanical seal. The first is that a mechanical seal should be installed only on a new pump, or a pump and motor which has been completely rebuilt. Never install a mechanical seal on a pump that has been in service for a time, without first reworking the pump.

The second point is to choose a seal with a multiple spring arrangement. Mechanical seals rely on springs to close the sealing faces. Seals are available with a single, large spring to close the faces. This type of arrangement results in unequal pressure on the sealing faces, resulting in premature failure. The multiple spring arrangement allows for more even pressure on the sealing faces, resulting in longer seal life.

The last consideration is to choose a mechanical seal that is hydraulically balanced. Seals that are hydraulically balanced tend to have a longer operational life.

Pump Packing

The second way to control the leakage around pump shafts is by the use of pump packings. Many types of pump packings are available. Most types of pump packings have been developed to meet specific needs and are not of interest to the water industry. Even so, there is still a large variety of packings from which to choose. Packing selection is simplified if packings are selected following these guidelines:

- Determine the pH of the water being pumped;
- Determine the pressure inside the stuffing box; and,
- Estimate the shaft speed in feet per minute.

Federal regulations require that drinking water pH be within a range of 6.5 to 8.0. Because of this narrow range for pH, pH is the least significant of the three factors under consideration for water system packing selection.

The stuffing box pressure is a factor which is difficult to measure so most people use a general rule of thumb that the stuffing box pressure is usually two-thirds of the pump discharge pressure. Therefore, to determine the stuffing box pressure, put a gauge on the discharge pipe to determine the discharge pressure. Then multiply the pump discharge pressure by 0.67. For example, a pump with a discharge pressure of 150 psi would have a stuffing box pressure of 150 psi X 0.67, or approximately 100 psi. The stuffing box on a pump must be allowed to leak, but the leakage should be controlled. The higher the stuffing box pressure, the more leakage there will be.

Example:

What is the stuffing box pressure on a pump with a discharge pressure of 200 psi?

Stuffing Box Pressure, psi = discharge pressure, psi x 0.67

$$\text{Stuffing Box Pressure, psi} = 200 \text{ psi} \times 0.67 = 134 \text{ psi.}$$

Packing comes in several weaves, from a very loose twisted packing to a moderately tight weave. In some instances it may be necessary to abandon woven packing material all together and use solid packing materials. Solid packing materials control leakage well in pumps with very high stuffing box pressures. Because of the abrasiveness associated with all packing materials, shaft speed is a very important factor to consider. The faster the shaft speed, the better and less abrasive the packing must be. To determine the shaft speed of a pump is a fairly simple matter:
First, multiply the shaft diameter in inches by 3.14. This will determine the shaft circumference in inches. Divide the shaft circumference in inches by 12 to determine the shaft circumference in feet. Next, multiply the shaft circumference in feet by the shaft speed in rpm or revolutions per minute. This will give us the shaft speed in feet per minute.

Example:
What would the shaft speed in feet per minute be for a pump with a 2 inch shaft, turning at 1,750 rpm?

Shaft circumference, in = Shaft diameter, in x 3.14
Shaft circumference, in = 2 in x 3.14 = 6.28 in

Shaft circumference, ft = Shaft circumference, in ÷ 12 (ft/in)
Shaft circumference, ft = 6.28 in ÷ 12 (ft/in) = 0.523 ft

Shaft speed, ft/min = Shaft circumference, ft x rpm
Shaft speed, ft/min = 0.523 ft x 1750 rpm = **912 ft/min**

To determine which packing material to use, determine the pH, stuffing box pressure, and shaft speed. Once these are determined, ask your supplier which packing is the best material to meet the indicated operating conditions. The available selection is too diverse to list all of them here.

Pump Packing Procedure
As in all maintenance procedures, the manufacturer’s literature for the pump should be consulted. You should be able to find out how many packing rings are needed, what size packing is needed, and where the lantern ring should be placed in the stuffing box. Before going further it would be wise to stop and examine in more detail some of the pump parts we are going to be dealing with when we pack a pump. The four parts of the stuffing box are: the gland, the sleeve, the packing and the lantern ring (or seal cage).

There must be some way to control the leakage around where the shaft protrudes into the pump volute. In order to control leakage, a pump is provided with a stuffing box and related parts. The stuffing box and its parts allow us to use packing to control the leakage.

Controlling Water Leakage
Since any material used in the stuffing box to control leakage is going to be abrasive to some extent, and this abrasiveness will result in wear and damage to the pump shaft, most pump shafts are equipped with sleeves. The sleeve is a device, slipped over the portion of the pump shaft that passes through the stuffing box, designed to take the wear from the packing and prevent damage to the shaft. Sleeves are cheaper and more easily replaced than shafts.

In order to reduce wear and extend the life of the sleeve, the sleeve and packing must be lubricated. This is accomplished using water. Most centrifugal pumps have an inlet for clean water into the stuffing box. This is called a water seal. Water is injected into the stuffing box under pressure and this water flows out of the stuffing box between the packing material and
sleeve. In so doing, friction between the packing and sleeve is reduced, the sleeve is cooled, and
debris is flushed from the stuffing box.

In order for water to flow into the stuffing box unobstructed, a device called a lantern ring or seal
cage is sometimes placed in the stuffing box under the water seal inlet port.

The lantern ring is designed to allow the water used for cooling and lubrication to flow into the
stuffing box unimpeded. Seal cages also help keep air from entering the pump. In order to
function properly the lantern ring must be placed in the correct location within the stuffing box.
Consult the manufacturer’s handbook.

The gland serves several functions in the stuffing box. The most obvious function is to hold the
packing in. The pressure from the water leaking into the stuffing box from the impeller casing
(volute) and the water being injected through the inlet port would push the packing out, if the
gland were not there to hold the packing in place. The gland also allows for control of leakage
from the stuffing box.

In no case should the gland be tightened to the point that water flow from the stuffing box is cut
off completely. The gland should only be tightened enough to stop excessive leakage. A general
rule to follow in determining the proper amount of leakage from the stuffing box, is to allow at
least 20 drops per minute per inch of shaft diameter. For example, a two inch shaft would need
40 drops per minute to leak from the stuffing box.

The gland also serves as an indicator of packing wear. When the gland has been adjusted until it
is flush with the stuffing box, it is an indication that the packing is worn out and it is time to
change it.

How to Pack a Centrifugal Pump
In replacing the pump packing, first consult the manufacturer’s literature. A general guideline to
packing replacement is given below:

1. Turn off the pump and lock out the power supply.
2. Close the discharge and suction valves.
3. If there is a separate pump supplying the stuffing box with lubricating water, turn
off this sealing water.
4. Remove the gland, and using the packing puller, remove the old packing material.
Use proper packing tools, not ice picks, screwdrivers, or coat hangers. These can
damage the sleeve or stuffing box housing, causing other problems.
5. Examine the old rings of packing material for damage or unusual wear.
6. Using a wash bottle, clean out all of the debris lift in the stuffing box.
7. With a flashlight and mirror, check the sleeve for rust, burrs and wear. Make any
necessary repairs to the sleeve or stuffing box before proceeding.
8. Using a straight edge and thickness gages or a dial indicator, check the pump and
motor for proper alignment. These procedures are listed elsewhere in the text.
9. Cut the packing material. Packing that is not cut correctly will not function
properly and will eventually cause damage to the pump. There are two methods
you can use to cut packing correctly. Using a shaft, sleeve, or mandrill of the
same size as the shaft as the pump to be packed, wrap either one wrap at a time, or
the required number of rings around the sleeve or shaft. Using a sharp knife,
make the cut. If no other device is available, wrap the packing around the shaft of
the pump to be packed, and make the cut. The cut is critical. If it is not done correctly, the packing should not be used. An improperly cut piece of packing material will have a joint that will not seal tightly. This loose joint will allow water to flow through the joint, rather than forcing the water to flow between the ring of packing and the shaft.

10. Replace the packing rings individually, seating each ring completely. This will require a tamping tool, or a mandrill like the one shown in the photo.

11. As you replace the rings, do not line up the packing joints. Stagger them at about 90° to each other. It is a good idea to alternate the joints by placing them at 9, 12, 3 o’clock.

12. After placing the last ring of packing, install the gland, making certain that it is square with the stuffing box housing. Run the gland nuts up finger tight.

13. Using a wrench, snug up the gland. DO NOT OVERTIGHTEN.

14. Back off on the gland nuts and tighten again finger tight. Insure that each nut is tightened equally and the gland remains square with the housing.

15. Turn on the sealing water.

16. Turn on the pump.

17. Open the discharge and suction valves.

18. Check the leakage from the stuffing box to insure that it is neither excessive nor insufficient. If it is insufficient, loosen the gland nuts.

19. Allow the pump to operate for about 16 to 24 hours. If the pump is still leaking too much water, carefully tighten each gland nut about one-quarter turn. Wait about 1 to 2 hours. If the pump is still leaking excessively, give the gland nuts about one quarter turn each, insuring the gland remains square with the housing. Recheck in one to two hours and make adjustments as necessary until the proper leakage rate is reached.

20. Recheck daily to insure the leak rate remains acceptable, and make one-quarter turn adjustments as necessary.
Electricity is the flow of invisible particles called electrons, through a conductor. That flow is controlled in an electric circuit. The knowledge that electricity is created by the flow of electrons, and the knowledge of how to capture electrons, makes electricity a convenient and convertible form of energy.

Electrons flow better in some things than in others. Conductors are substances in which electrons flow freely. Metals are excellent conductors. Water is a fair conductor. Since the human body is mostly water, it can conduct electricity fairly well, too. This is why it is important to be very careful when working around electricity.

Insulators are substances in which electrons cannot flow freely. Glass, plastic, and rubber are good insulators. Electrical wiring is always enclosed in a protective covering of plastic or rubber that serve as insulators.

In order to make electrons do useful work, the electrons must have a source of pressure to push on them and cause them to move. Also, the electrons must have a complete path or circuit to follow. The basic components of an electric circuit include the following:

- **Source**-The part that provides the electric force or pressure to move the electrons; such as a battery or generator
- **Load**-The part that does the work or uses the electricity; such as a light bulb, heater or motor
- **Conductor**-The part that carries the electricity around the circuit such as wire, cable, or power line.

Current Flow: Amperes

Current is the flow of electrons. To understand current, imagine an electric circuit as a chain. When all three components (source, load, conductor) exist in the circuit, the electrical force causes the electrons to move down the chain. This forced movement of electrons is called current and is measured in amperes. Current is measured with a test instrument called an ammeter. Two types of current flow are: Direct Current (DC) - The electrons flow in one direction; and Alternating Current (AC) - The electrons flow back-and-forth.

The AC you use at home changes direction 60 times per second. This means the electrons move back-and-forth 60 times per second. This flow in one direction, reversing, and flowing in the other direction is called a cycle. The term 60 cycles AC or 60 Hertz means 60 of these cycles occur each second.

Electrical Pressure: Volts

Electrical pressure is the force that causes electrons to move in a closed electric circuit. It is also referred to as voltage. The pressure or force is measured in volts by a test instrument called a voltmeter. In a DC circuit, a battery produces voltage and in AC circuit a generator produces voltage. A car battery is typically 12 volts DC. That means that the difference in electron pressure between the two terminals is 12 volts. The electric outlets in your well house are 120 volts or 240 volts AC. The voltage difference between the two prongs of the outlet is 120 V or 240 V.
Resistance: Ohms
Electrons do not flow freely in a conductor. There is a certain amount of resistance or friction to oppose the electron flow. This resistance is called ohms and is measured by a test instrument called an ohmmeter.

Water Flow Analogy of Electrical Circuit
The flow of electrons in an electric circuit can be compared to the flow of water through a closed loop piping system. Volts, amps, and watts measure electricity. Volts measure the pressure under which electricity flows. Amps measure the amount of electric current. Watts measure the amount of work done by a certain amount of current at a certain pressure or voltage.

To simplify the relationship, think of water in a hose. Turning on the faucet supplies the force, which is like the voltage. The amount of water flowing (gallons per minute) through the hose is like the amperage. You would use a lot of water that comes out fast (more watts) to wash off a muddy car. You would use less water that comes out more slowly (less watts) to fill a glass.

Water circuit vs. Electric circuit Source
- Water circuit - water pump produces water pressures (psi) to cause water to flow (gpm)
- Electric circuit - generator produces electrical force (volts) to cause electrons to flow (amps)

Flow measurement
- Water circuit - flow meter measures water flow in gpm
- Electric circuit - ammeter measures current in amperes (amps)

Load
- Water circuit - water wheel does work by rotating
- Electric circuit - light bulb does work by producing light and heat

Pressure loss
- To determine the loss of energy, pressure gauges installed before and after the water wheel can measure the loss of water pressure.
- A voltmeter measures voltage drop as the current goes through the light bulb (conversion of electrical energy to light and heat energy).

Conductor
- Water circuit - pipe that carries the flow of water
- Electric circuit - wire that carries the electrons
ELECTRICAL CURRENT

Electricity is a term used to describe the energy produced (usually to perform work) when electrons are caused to directional (not randomly) flow from atom to atom. In fact, the day-to-day products that we all benefit from, rely on the movement of electrons. This movement of electrons between atoms is called electrical current. how electrical current is produced and measured will be discussed on the following pages.

It is very important to have a way to measure and quantify the flow of electrical current. When current flow is controlled it can be used to do useful work. Electricity can be very dangerous and it is important to know something about it in order to work with it safely. The flow of electrons is measured in units called amperes. The term amps is often used for short. An amp is the amount of electrical current that exists when a number of electrons, having one coulomb of charge, move past a given point in one second. A coulomb is the charge carried by 6.25×10^{18} electrons. 6.25×10^{18} is scientific notation for $6,250,000,000,000,000,000,000$. That is a lot of electrons moving past a given point in one second! Since we cannot count this fast and we cannot even see the electrons, we need an instrument to measure the flow of electrons. An ammeter is this instrument and it is used to indicate how many amps of current are flowing in an electrical circuit.

We also need to know something about the force that causes the electrons to move in an electrical circuit. This force is called electromotive force (EMF). Sometimes it is convenient to think of EMF as electrical pressure. In other words, it is the force that makes electrons move in a certain direction within a conductor. But how do we create this “electrical pressure” to generate electron flow? There are many sources of EMF. Some of the more common ones are: batteries, generators, and photovoltaic cells, just to name a few.

Batteries are constructed so there are too many electrons in one material and not enough in another material. The electrons want to balance the electrostatic charge by moving from the material with the excess electrons to the material with the shortage of electrons. However, they cannot because there is no conductive path for them to travel. However, if these two unbalanced materials within the battery are connected together with a conductor, electrical current will flow as the electron moves from the negatively charged area to the positively charged area. When you use a battery, you are allowing electrons to flow from one end of the battery through a conductor and something like a light bulb to the other end of the battery. The battery will work until there is a balance of electrons at both ends of the battery. Caution: you should never connect a conductor to the two ends of a battery without making the electrons pass through something like a light bulb which slows the flow of currents. If the electrons are allowed to flow too fast the conductor will become very hot, and it and the battery may be damaged.

To understand how voltage and amperage are related, it is sometimes useful to make an analogy with water. Look at the picture here of water flowing in a garden hose. Think of electricity flowing in a wire in the same way as the water flowing in the hose. The voltage causing the electrical current to flow in the wire can be considered the water pressure at the faucet, which causes the water to flow. If we were to increase the pressure at the hydrant, more water would flow in the hose. Similarly, if we increase electrical pressure or voltage, more electrons would flow in the wire. Does it also make sense that if we were to remove the pressure from the hydrant by turning it off, the water would stop flowing? The same is true with an electrical circuit. If we remove the voltage source, or EMF, no current will flow in the wires.
Another way of saying this is: without EMF, there will be no current. Also, we could say that the free electrons of the atoms move in random directions unless they are pushed or pulled in one direction by an outside force, which we call EMF.

There is another important property that can be measured in electrical systems. This is resistance, which is measured in units called ohms (Ω). Resistance is a term that describes the forces that oppose the flow of electron current in a conductor. All materials naturally contain some resistance to the flow of electron current. We have not found a way to make conductors that do not have some resistance.

If we use our water analogy to help picture resistance, think of a hose that is partially plugged with sand. The sand will slow the flow of water in the hose. We can say that the plugged hose has more resistance to water flow than does an unplugged hose. If we want to get more water out of the hose, we would need to turn up the water pressure at the hydrant. The same is true with electricity. Materials with low resistance let electricity flow easily. Materials with higher resistance require more voltage (EMF) to make the electricity flow.

The scientific definition of one ohm is the amount of electrical resistance that exists in an electrical circuit when one amp of current is flowing with one volt being applied to the circuit.

Resistance can be both good and bad. If we are trying to transmit electricity from one place to another through a conductor, resistance is undesirable in the conductor. Resistance causes some of the electrical energy to turn into heat so some electrical energy is lost along the way. However, it is resistance that allows us to use electricity for heat and light. The heat that is generated from electric heaters or the light that we get from light bulbs is due to resistance. In a light bulb, the electricity flowing through the filament, or the tiny wires inside the bulb, cause them to glow white hot. If all the oxygen were not removed from inside the bulb, the wires would burn up.

An important point to mention here is that the resistance is higher in smaller wires. Therefore, if the voltage or EMF is high, too much current will follow through small wires and make them hot. In some cases hot enough to cause a fire or even explode. Therefore, it is sometimes useful to add components called resistors into an electrical circuit to slow the flow of electricity and protect the components in the circuit. Resistance is also good because it gives us a way to shield ourselves from the harmful energy of electricity.

Copper is considered to be a conductor because it “conducts” the electron current or flow of electrons fairly easily. Most metals are considered to be good conductors of electrical current. Copper is just one of the more popular materials that is used for conductors. Other materials that are sometimes used as conductors are silver, gold, and aluminum. Copper is still the most popular material used for wires because it is a very good conductor of electrical current and it is fairly inexpensive when compared to gold and silver. Aluminum and most other metals do not conduct electricity quite as good as copper.

Insulators are materials that have just the opposite effect on the flow of electrons. They do not let electrons flow very easily from one atom to another. Insulators are materials whose atoms have tightly bound electrons. These electrons are not free to roam around and be shared by neighboring atoms. Some common insulator materials are glass, plastic, rubber, air, and wood.
Insulators are used to protect us from the dangerous effects of electricity flowing through conductors. Sometimes the voltage in an electrical circuit can be quite high and dangerous. If the voltage is high enough, electric current can be made to flow through even materials that are generally not considered to be good conductors. Our bodies will conduct electricity and you may have experienced this when you received an electrical shock. Generally, electricity flowing through the body is not pleasant and can cause injuries. The function of our heart can be disrupted by a strong electrical shock and the current can cause burns. Therefore, we need to shield our bodies from the conductors that carry electricity. The rubbery coating on wires is an insulating material that shields us from the conductor inside. Look at any lamp cord and you will see the insulator. If you see the conductor, it is probably time to replace the cord.

Conductors have a very low resistance to electrical current while insulators have a very high resistance to electrical current. These two factors become very important when we start to deal with actual electrical circuits.

Probably the most important mathematical relationship between voltage, current, and resistance in electricity is something called “Ohm’s Law”. This formula is used to calculate electrical values so that we can design circuits and use electricity in a useful manner. Ohm's Law is \(I = \frac{V}{R} \), where \(I \) = current, \(V \) = voltage, and \(R \) = resistance. Ohm’s Law can also be written as \(V = I \times R \) or \(R = \frac{V}{I} \). All of these variations of Ohm’s Law are mathematically equal to one another.

Let’s look at what Ohm’s Law tells us. In the first version of the formula, \(I = \frac{V}{R} \), Ohm's Law tells us that the electrical current flowing in a circuit is directly proportional to the voltage and inversely proportional to the resistance. In other words, an increase in the voltage will tend to increase the current while an increase in resistance will tend to decrease the current.

The second version of the formula tells us that if either the current or the resistance is increased in the circuit, the voltage will also have to increase. The third version of the formula tells us that an increase in voltage will result in an increase in resistance but that an increase in current will result in a decrease in resistance.

As you can see, voltage, current, and resistance are mathematically, as well as, physically related to each other. We cannot deal with electricity without all three of these properties being considered.

When we connect various components together with wires, we create an electric circuit. The electrons must have a voltage source to create their movement and, of course, they need a path in which to travel. This path must be complete from the EMF source, through the other components and then back to the EMF source.

The voltage for any electric circuit can come from many different sources. Some common examples are: batteries, power plants, fuel cells. When we plug an appliance into a wall outlet, voltage and current are available to us. That voltage is actually created in a power plant somewhere else and then delivered to your house by the power wires that are on poles or buried underground.

As a matter of fact, since no current can flow unless there is a voltage source, we also refer to these sources as current sources. In other words, without the voltage source, there will be no current flowing. This makes it a current source instead of a voltage source.
Batteries create voltage through a chemical process. Power plants generate electricity from numerous mechanical methods, some burn coal or gas to create steam while others use water flowing through a dam on a lake. There are also nuclear-powered generating power plants. All of these power-generating systems turn large turbines that turn the shaft on a generator. All of these sources of electricity convert something called potential energy to kinetic energy. The potential energy is stored in the fuel, whether it is coal, gas, uranium, water in a dam, etc. When we utilize these fuels to generate electricity, they become kinetic energy. We might say that potential energy is waiting to be used while kinetic energy is being used.

In addition to the voltage source, we need to have wires and other components to build an electric circuit. Remember that copper wires are conductors since they can easily conduct the flow of electrons. We may also use resistors or other forms of loads to form a complete circuit. If we did not include resistors in our circuit, there may be too much current flowing to and from our voltage source and we could damage the voltage source.

Circuit diagrams are a pictorial way of showing circuits. Electricians and engineers draw circuit diagrams to help them design the actual circuits. A capacitor is used to store electrical charge. An example would be a timer.

Now that we have a fairly good understanding of basic electricity terms and concepts, let's take a closer look at some more details of the electrical current itself. The battery we have been using for a current/voltage source generates direct current, which simply means the current flows in only one direction.

As long as electrons are flowing through the atoms of the circuit, work is being done. We can see that work is being done in this circuit because it lights the light bulb. The actual amount of electrons that are flowing is determined by the type and size of the battery as well as by the size and type of the light bulb. We could reverse the polarity of the battery by switching the contacts (wires), and the current would flow in the opposite direction and the bulb would still light. Either way the battery is connected to the circuit, current can only flow in one direction. **Direct current (DC)** can also be generated by means other than batteries. Solar cells, fuel cells, and even some types of generators can provide DC current.

AC is short for **alternating current**. This means that the direction of current flowing in a circuit is constantly being reversed back and forth. This is done with any type of AC current/voltage source. The electrical current in your house is alternating current. This comes from power plants that are operated by the electric company. Those big wires you see stretching across the countryside are carrying AC current from the power plants to the loads, which are in our homes and businesses. The direction of current is switching back and forth 60 times each second.
The distribution system is a network of storage tanks, pipes, valves, hydrants, service connections, and meters that are needed to get water from the point of production to the customer. The distribution system begins at the point where water enters the system at usable pressure. It ends at the customer's side of the meter installation.

Each water system has its own unique requirements for water storage. These depend on such factors as the system’s pressure, normal water usage, low and peak demand, and fire protection requirements. Ground elevations in the area should be surveyed and the storage tanks located at the highest possible elevation to the area served. Ample storage capacity in a water distribution system will mean lower operating costs and fewer pressure problems for the operator.

Storage Tanks

The two primary purposes for the use of storage tanks within a water distribution system are to provide volume and pressure. Sufficient storage should be based on a typical operating day in any PWS involves varying demands for the water. The most common method of creating system pressure is through the use of an elevated water storage tank to develop the necessary feet of head to force water through the system. The operation of storage tanks is also critical to maintaining a continued flow of water to a distribution system for domestic, commercial, or industrial use and for fire protection.

Types of Storage Tanks

Water storage facilities come in a variety of tank types or configurations including:

- Gravity storage: ground storage, elevated tanks, standpipes, and
- Pressure storage: hydropneumatic or diaphragm (bladder) tanks.

Depending on their type, they are usually constructed of either steel or concrete. Their primary purpose is to store water during periods of low demand for distribution during periods of high demand.

Gravity Storage Tanks

Adequate ground and elevated storage tanks are essential for the proper operation of a water system. These tanks are necessary in order to provide an ample supply of water during peak demands, dependable fire protection, adequate water pressure to outlying areas, and lower pumping costs.

A gravity storage system offers several advantages over other (e.g., hydropneumatic) systems and should be considered where topographic conditions are favorable. The larger water systems have greater advantages. However, even smaller systems will have these advantages:

- Less variation in pressure
- Storage for fire fighting use
- One to two days storage to meet water requirements
- Greater flexibility to meet peak demands
- Use of lower capacity wells (pumping not necessary to meet peak system
Sizing of pumps to take better advantage of electric load factors
- Reduced on and off cycling of pumps
- Tie-in of several wells, each pumping at its optimal rate

Ground Storage Tanks
The purpose of ground storage is to hold enough water in reserve to compensate for fluctuation of the water demand in the system. Ground storage tanks are constructed of reinforced concrete, pre-stressed concrete, and steel and are circular or rectangular. Reinforced or pre-stressed concrete is the preferred material since it is more resistant to deterioration when in contact with water. Some ground storage tanks are built above ground while others may be partial or completely underground. Underground storage should be located above the local groundwater table. All tanks should be located so that surface and underground drainage is away from the structure. Tanks should never be located within the 100-year flood plain. Sewers, drains, standing water, and similar sources of possible contamination must be kept at least 50 feet from the tank.

The most common location of ground storage tanks is near the treatment plant. These storage tanks are usually referred to as clear wells. Ground storage tanks are also used to store additional water, which can be pumped into the system for fire fighting purposes. A ground storage tank should provide storage equivalent to 2 times average daily demand or 150 gallons per customer per day. This amount will usually permit a uniform pumping rate throughout the day. Ground storage tanks should contain additional storage for filter backwash water.

Ground storage tanks can provide system pressure if they are located on hills within or near the distribution system area. Such situations are ideal since ground storage tanks are usually less expensive to construct than elevated storage tanks.

Standpipe Tanks
Standpipes are essentially ground storage tanks constructed to a height that is greater than their diameter. Their diameter is constant from the ground to the top, and they are completely filled with water. In most installations, only the water in the upper portion of the tank will furnish usable system pressure. When the water level falls to less than 70 feet from the ground surface, there will be less than 30 psi of pressure. For this reason most standpipes are constructed with an adjacent pumping station that can be used to boost the pressure of water from the lower section of the standpipe when needed.

Elevated Storage Tanks
Elevated storage tanks are generally located where the land is flat. These water tanks are supported by towers (or legs) and are said to "float" on the system. This means that they are directly connected to a system main and hold large volumes of water high enough in the air to supply the system with an adequate and fairly uniform pressure during peak demands. In this type of storage tank the system pressure is provided by the height of the water above the ground. The overflow point of the tank is the maximum system pressure. One limitation of elevated storage tanks is that the pressure in the distribution system may vary with the water level in the tank. In order to maintain a static pressure of 50 psi, water must be stored 115 feet above the customer.

General Operation of Ground and Elevated Storage Tanks
Water contained in a vessel or pipe 100 feet high will exert a pressure of 43.33 pounds per square inch at the bottom of the pipe. The pressure is constant no matter the diameter of the pipe. It could be one inch or ten feet in diameter, but the pressure at the bottom of this vessel will still be 43.33 pounds per square inch.

Pressure Storage

Pneumatic storage tanks are pressurized by a surcharge of air that forms a bubble in the tank. Pneumatic systems are very common for use in storing and distributing small quantities of water. They combine the energy from a pump with the principle of air pressure to force water into the distribution system. The compressed air maintains water pressure when use exceeds the pump capacity and keeps the pump from cycling off and on every time a faucet opens. Pneumatic tanks are also used in large systems as surge protection systems. As the pressure from water hammer surge enters the tank, the force is exerted against the air pocket. The air pocket is compressed and absorbs the energy to dampen the shock wave.

Understanding how a pneumatic system works requires understanding basic system operation and the role of system components.

- The pump starts up when the pressure inside the tank falls to a certain pressure (cut-in pressure), and it pumps water into the tank. The pocket of air in the tank gets smaller and the pressure inside the tank increases as more water is pumped into the tank.
- When the pressure builds to a certain point (cut-out pressure), the pump stops and the air forces the water into the distribution system, as it is needed.
- When the pressure becomes too low, the pump starts up again, and the cycle is repeated. The cycle rate is the number of times the pump starts and stops in 1 hour.

Pneumatic systems are a good, reliable source for providing water to a small number of customers. In West Virginia, they cannot serve more than 75 living units. The gross volume of the pneumatic tank (in gallons) shall be at least 10 times the capacity of the largest pump (rated in gallons per minute). For example, a 250 gallon per minute pump must have a 2,500 gallon pressure tank. They are not a good storage vessel for fire protection purposes due to the small volume of water within the vessel.

Cathodic Protection

When two dissimilar metal rods are connected to a voltage meter and submerged in water that contains dissolved salts, a very small voltage reading (less than 0.0001 volts) will occur. This is the way electric storage batteries work. In an elevated storage tank the impurities in the water and the tank itself can cause a voltage to be generated, with the tank giving up metal as the current flows into the surrounding water and to ground.

Cathodic protection systems can be installed to prevent this corrosion by reversing the flow of the electrical current from the water to the tank. The basic theory of cathodic protection is to supply current, from an outside source, through sacrificial anodes suspended in the tank and back into the tank. This electrical current is D.C. and the voltage should be just enough to compensate for the natural voltage set up between the tank and the water. The tank is now the ground and will not become pitted.

The sacrificial anode is usually a piece of iron, magnesium, carbon, or aluminum that is 1-2 inches in diameter and 12 to 18 inches long. The anodes are designed to give up metal to the water instead of the tank. Therefore, they will eventually need replacing. They should be inspected every six months and usually replaced yearly. Installation and maintenance of a cathodic protection system can be hazardous work and should be done by a professional tank and tower company. The success of an installation depends on the properspacing of the anodes so that
all surfaces of the tank receive the flow of current equally. When cathodic systems run at too high a voltage, above 1.2v on a test cell, hydrogen gas can be generated between the tank and any coating material. This can result in blistering and peeling of the coating, which can also cause corrosion.

Level Indicators
Automatic pump controls are operated by signals from the storage tank that indicate that the water is at the lowest or highest desired level. A signal from the low-level indicator will start the pump. The pump will continue to run until the water fills the tank up to the high level. A signal will then go back to the pump to shut it off. There are three main types of liquid level control systems. They are electrode systems, float systems, and pressure sensing systems.

Electrode Systems
The use of electrodes is the most common system used today. Pump controls are activated as the water level rises above or drops below these electrodes. As the water level drops below the low-level electrode, the circuit is opened triggering a control signal to start the pump. As the water level rises to contact the high level electrode, the circuit is closed triggering a control signal to shut off the pumps. The pump will not restart until the water level drops below the low-level electrode again.

Float Systems
Float systems are used primarily in ground storage tanks. As the float rises or falls with the water level, high level or low level switches are tripped activating the pump control circuit. This type of level control will have to be checked on a regular basis to prevent malfunctions. Freezing during the winter is always a problem with floats and electrodes due to damage caused as the water level (and the ice) rises and falls. Circulation of water inside the tank may help minimize ice buildup.

Pressure Sensing Systems
Pressure sensing controls are normally located near the bottom of the storage tank. This type of control is activated by the amount of head pressure in the tank. As the pressure increases, a spring or metal band is expanded tripping a micro-switch or a mercury switch that then activates the pump. The on and off levels on these switches are set by applying or decreasing the tension on the spring, or by setting manual control points on a dial for the mercury switch. These switches must be protected from freezing and extreme vibrations for proper operation. Pressure transmitters can also be used to control multiple wells or pumps and the signal can be converted into a tank level reading.

Disinfection of Water Storage Facilities
New storage facilities and ones that have been repaired or cleaned must be disinfected before being placed in service. The storage facilities must be disinfected in accordance with current AWWA Standard C652. The following forms of chlorine may be used: gaseous chlorine, sodium hypochlorite or calcium hypochlorite.

There are several methods used for disinfection. Below is a brief description, the complete procedure can be found in Section 4: Alternative Methods of Chlorination of the AWWA Standard for Disinfection of Water-Storage Facilities (C652).

The three methods are:
1. Chlorination of the full storage facility such that, at the end of the appropriate retention period, the water will have a free chlorine residual of not less than 10 mg/L
2. Spraying or painting of all storage facility water-contact surfaces with a solution of 200 mg/L available chlorine
3. Chlorination of the full storage facility with water having a free chlorine residual of 2 mg/L after 24 hours.

The disinfection procedure (AWWA C652 chlorination method 3, section 4.3) that allows use of the chlorinated water held in the storage tank for disinfection purposes is not recommended. When this procedure is used, it is recommended that the initial heavily chlorinated water be properly disposed in order to prevent the release of water that may contain various chlorinated organic compounds into the distribution system.

After the chlorination procedure is completed and before the tank is placed in service, water from the full tank must be tested for bacteriological safety. Three or more successive sets of samples, taken at twenty-four (24) hour intervals, must be microbiologically satisfactory before the facility is placed into operation. If the test results are unsatisfactory, the process must be repeated.

The chlorine level must be reduced to acceptable levels before the water is used or discharged. Disposal of heavily chlorinated water from the tank disinfection process must be in accordance with the requirements of the WVDEP.

WATER MAINS

Water mains are the pipes that carry water from the source to the storage facilities and throughout the distribution system. The size of the main is an important factor. It will determine how well the main transmits water through the system. This is due to the fact that smaller pipes allow less water flow due to the size restriction and the friction loss. This is the friction created between the water and the inside of the pipe.

There are three general types of piping systems used by water utilities in the distribution system.

Transmission Mains

Transmission mains are designed to carry large quantities of water from the source of supply to the distribution mains. They usually run in a nearly straight line and have only a few side connections.

Distribution Mains

Distribution mains are the pipelines that carry water from the transmission mains and distribute it throughout the system. They have many side connections and are frequently tapped for customer connections and fire hydrants.

Service Lines

Service lines or “services” are small diameter pipe that run from the distribution mains to the customers homes.

WATER MAIN DESIGN

Pressure

All water mains, including those not designed to provide fire protection, must be sized after a hydraulic analysis based on peak flow demands and pressure requirements. The system must be designed to maintain a minimum pressure of 20 pounds per square inch (psi) at ground level at
all points in the distribution system under all conditions of flow and 30 psi under static conditions. The normal working pressure in the distribution system must be designed based upon the pipe manufacturer’s recommendations and the applicable AWWA standards for the type of pipe.

Fire Protection
The minimum size of a water main for providing fire protection and serving fire hydrants must be of 6-inch diameter. Larger size mains will be required if necessary to allow the withdrawal of the required fire flow while maintaining the minimum residual pressures. Any departure from minimum 6 inch diameter requirements must be justified by hydraulic analysis and future water use, and can be considered only in special circumstances; however, no mains less than 2 inches are permitted.

When fire protection is to be provided, system design must be such that fire flows and facilities are in accordance with the requirements of the ISO. Under no circumstances must fire flows be less than 250 gallons per minute.

Dead Ends
In order to provide increased reliability of service and reduce head loss, dead ends must be minimized by making appropriate tie-ins whenever practical. Where dead-end mains occur, they must be provided with a fire hydrant if flow and pressure are sufficient, or with a flushing hydrant or blow-off, approved by the Environmental Engineering Division, for flushing purposes. Flushing devices must be sized to provide flows that will give a velocity of at least 2.5 feet per second in the water main being flushed.

INSTALLATION OF WATER MAINS
Specifications must incorporate the provisions of the AWWA standards and manufacturer's recommended installation procedures.

Bedding
A continuous and uniform bedding must be provided in the trench for all buried pipe. Backfill material must be tamped in layers around the pipe and to a sufficient height above the pipe to adequately support and protect the pipe. Stones found in the trench must be removed for a depth of at least 6 inches below the bottom of the pipe.

Depth
All water mains must be covered with sufficient earth or other insulation to prevent freezing. All distribution mains must be provided with a minimum of 36 inches of earth covering; 42 inches are recommended. All mains of less than 8 inches in diameter within 5 feet of a heavily traveled highway must be provided with at least 42 inches of cover.

Blocking
Water in motion can exert a tremendous pressure if it is suddenly stopped or there is a change in direction of flow. Wherever tees, bends, plugs and hydrants exists in a pipeline having flexible joints, the force (thrust) created by the water motion is likely to open the joints nearest the fittings, unless there is a backing block to resist the thrust. The purpose of the backing (thrust) block is to spread the thrust over an area large enough to absorb or restrain it. It is important for the block to be centered on the thrust force and to cradle the fitting to distribute the force. The
magnitude of the thrust varies with the amount of bend, diameter of pipe, and the pressure inside the pipe. Pipelines should not be pressure tested until the thrust block has been set.

Pressure and Leakage Testing
All types of installed pipe must be pressure tested and leakage tested in accordance with AWWA Standard C600. This testing will determine if the pipe has been installed correctly and if it is ready for service. Hydrostatic testing is by far the most common and logical. Pressures for testing are normally at least 50 psi above normal operating pressure for operating pressures that do not exceed 200 psi. Where the operating pressure is greater than 200 psi, the test pressure should be 1.5 times the operating pressure, but no more than the design rating of the pipe and valves. This will disclose faulty pipes, bad joints, breaks, and other major defects. The duration of the test should be no less than 2 hours and no more than 24 hours.

When pressure tests reveal an excessive water loss, the source of the leakage must be found and corrected and additional tests made.

Disinfection
Disinfection will ensure that the water delivered to the customer is safe. The problems encountered with main disinfection will be lessened, if proper precautions are taken during pipe installation to prevent dirt, trench water, and other foreign material from entering the pipe.

All new, cleaned or repaired water mains must be disinfected in accordance with AWWA Standard C651. The following forms of chlorine may be used: gaseous chlorine, sodium hypochlorite or calcium hypochlorite. The disinfection procedure consists of three operations. Below is a brief description:
1) Preliminary flushing. Mains must be flushed, prior to disinfection, by running a sufficient amount of water through them.
2) Disinfection. The chlorine dosage should be 50 mg/L for 24 hours.
3) Final flushing and testing. Mains should be flushed until there is a normal, operating chlorine residual (usually 1 mg/L). Bacteriological samples must be collected, 24 hours apart. Results must be negative for 2 consecutive days.

Disposal of heavily chlorinated water from the tank disinfection process must be in accordance with the requirements of the WVDEP.

Separation of Water and Sewer Lines
Adequate separation should always be maintained between water mains and sewer lines. The theory is that sewers are likely to leak and contaminate the soil with wastes. If at the same time the adjoining water main depressurizes, the wastes can be drawn into the water main. Water mains must be laid at least 10 feet horizontally from any existing or proposed sewer. The distance must be measured edge to edge. Water mains must cross above sewers and must be laid to provide a minimum vertical distance of 18 inches between the bottom of the water main and the top of the sewer.
Flushing
West Virginia recommends flushing of water mains twice a year from the source out to the dead ends with a minimum velocity of 5 feet per second (fps).

PIPING

Of the many types of pipe in use today, no one type fits all conditions of service. Knowledge of the different types of pipe will allow the operator to select the one that best fits the installation. Pipe is classified based on its composition: Cast Iron Pipe; Ductile Iron Pipe; Steel Pipe; Asbestos Cement Pipe; and Plastic Pipe.

Pipe Size and Location
Water mains should be placed in the public right of way or easements must be obtained if it becomes necessary to cross private property. The overall pattern of the system should provide for as many closed loops as possible. Long isolated lines terminating in dead ends without interconnections should be avoided.

The separation required to avoid contamination of the water main must be laid 10 feet from a sanitary sewer when they are running parallel. The distance must be measured edge to edge. Water mains must cross above sewers and must be laid to provide a minimum vertical distance of 18 inches between the bottom of the water main and the top of the sewer. At crossings, one full length (20 feet) of water pipe must be located so both joints will be as far from the sewer as possible. Special structural support for the water and sewer pipes may be required.

The size of the water main will depend on what services it will supply and the flow expected. When determining the water demand, pressure losses have to be taken into consideration. If fire protection is required, the minimum size of a water main must be six inches in diameter. Some utilities have adopted an eight-inch minimum size for the main network.

Service Line Design
The condition of the service lines is often an overlooked part of the water system. In most systems, the total length of service lines may nearly equal and sometimes even exceed the total length of the mains.

Service lines consist of two parts: the service connection that extends from the main in the street to the property line or curb stop; and the portion of the pipe that runs from the curb stop to the building. In most cities, the water operator needs to be concerned only with size, selection of pipe materials, and installation of the service connection.

VALVES

Valves are mechanical devices used to stop flow, regulate water flows, reduce pressure, provide air and vacuum relief, blow off or drain water from the system, to prevent backflow and to isolate sections of the piping system for repair and maintenance.

Valve placement depends on the layout of the system, location of the customers, location of points susceptible to damage, and cost factors. The OEHS requires valve spacing of every 500 feet in commercial districts and at not more than 800 foot intervals in other districts. Where
systems serve widely scattered customers and where future development is not expected, the valve spacing must not exceed 2,500 feet.

Valves are installed at enough points on a water system to minimize loss of water service during repairs. It is common to place valves at street intersections or at the extension of property lines. Valves are supplied with valve boxes or pits for maintenance.

Valves come in a variety of styles, shapes and sizes, but their main purpose is to regulate or stop the flow of water. Most of the valves in a distribution system are installed for isolation of sections of piping for maintenance and repair. Control valves are designed to control pressures and throttle flows to prevent damage to the system.

ISOLATION VALVES

Isolation valves are used throughout the system to stop the flow of water. They are usually gate valves or butterfly valves. Each branch line should have an isolation valve at the point of connection to the main line. The proper location of these valves is important in order to isolate small sections of line for repair in an effort to minimize the number of customers that are out of water.

Gate Valves
The most common type of valve used in a water distribution system is the gate valve. It receives its name because of its gate-like operation. When fully open, gate valves provide almost unrestricted flow. A gate valve is not well adapted for throttling flow or for frequent operation. Either will cause excessive wear on the seating edges of the discs and guides.

The number of turns needed to open or close a gate valve that is not gear reduced is equal to 3 times the diameter plus 1-3 turns to seat properly. So a 6" valve will take 3 x 6 = 18 + 1-2 or about 19-20 turns to close. Larger valves will take 2-3 extra turns.

Butterfly Valves
The butterfly valve consists of a shaft-mounted disc that rotates in a 90° arc from fully open to fully closed. Although butterfly valves are frequently used in place of gate valves to shut off services, the butterfly is also used in throttling or in automatic control of the flow of water. The valve will open, close, or throttle on command from a controller.

Ball Valves
Ball valves are similar to butterfly valves. They are the second most common type of valve used in most systems. Ball valves offer little or no resistance to the flow of liquids. One of its features is that a 90° turn quickly opens or closes the valve completely. The handle position also indicates whether or not the valve is in the opened or closed position. Its simple design allows the valve to operate easily and offers ease of repair. They are used as corporation stops on service lines and curb stops on meter setters.

Globe Valves
Globe valves are installed where there is to be a frequent change of operation and can be used as an isolation or control valve. It receives its name because the main body is globelike in shape. Because of its design, this type of valve offers a significant resistance to the flow of liquids but does provide a more positive shutoff. Except for some special service applications, the globe
valves used in water systems are generally three inches or smaller. The high-pressure loss in this valve limits it to smaller sizes. Globe valves are commonly used for water faucets and other household plumbing.

CONTROL VALVES

Control valves are designed to control flows or pressures in the system. Control valves are usually one of the least understood components of a water system. They are designed to control the flow of water by reacting to changes in the system and automatically opening or closing the valve to compensate. They are globe valves. There are a number of different applications for the control valves that may be used in the system.

Check Valves
A check valve is designed to allow flow in only one direction. These types of valves are most commonly used on the discharge side of the pumps to prevent backflow when the power is turned off. Foot valves are a special type of check valve installed on the bottom of pump suction to prevent loss of prime when the pump is turned off.

Air Release Valves
Air release valves are used to allow air that may be trapped in the line to escape. The trapped air can create pressure and pumping problems, milky-water complaints, and pressure spikes that resemble water hammer. They are very useful in systems that are in hilly country. They should be located at the top of hills where the trapped air will collect.

Altitude Valves
An altitude valve is a control valve that is designed to close when an elevated storage tank is full. They are needed when there are several storage tanks at different elevations in a system. Altitude valves will be used on the lower tanks to prevent them from overflowing. Each valve will isolate its tank so that the top tank can be filled and not drain out through the lower tanks. This is one of the most common uses of control valves in water systems.

Pressure Reducing Valves
Another common use of a control valve is found in areas where the differences in elevation in the system create unacceptably high water pressures in the lower elevations. A control valve can reduce and maintain a steady pressure on the downstream side of the valve. There is a maximum and minimum flow that a PRV can handle. When the low drops too low the valve will chatter or start slamming open and closed. This will create severe water hammer problems. To avoid this problem, PRV's are sometimes installed in pairs with a small valve in parallel with the larger valve. The small valve is set at a higher pressure. This will allow it to handle the low flows and keep the large valve shut so it doesn't chatter.

Pressure Relief Valves
Pressure relief valves are similar to globe valves, but their disks are normally maintained by a spring. Pressure relief valves are used to provide protection against high pressures that may develop in the system. They should be located in any part of the system where pressure is controlled by a pressure-reducing valve. They are also used at booster pump stations. When the valve senses a high pressure upstream, it will open to pass enough water to drop the pressure back down to set point. The water is discharged to a storm sewer or ditch. If the pressure upstream drops, it will close automatically. The set point should be about 10-15 psi higher than...
the normal system pressure at that location.

Pressure Relief Valves
Pressure relief valves are similar to globe valves, but their disks are normally maintained by a spring. Pressure relief valves are used to provide protection against high pressures that may develop in the system. They should be located in any part of the system where pressure is controlled by a pressure-reducing valve. They are also used at booster pump stations. When the valve senses a high pressure upstream, it will open to pass enough water to drop the pressure back down to set point. The water is discharged to a storm sewer or ditch. If the pressure upstream drops, it will close automatically. The set point should be about 10-15 psi higher than the normal system pressure at that location.

Pressure Sustaining Valves
In some systems there are areas of very heavy water demand that can sometimes “rob” the pressure of upstream areas. The control valve will act to maintain the desired upstream pressure during these conditions and throttle the flow of water to the area of heavy demand.

Valve Operation and Maintenance
Valves normally suffer from a lack of operation, not wear. Valves four inches and larger should be exercised annually. Exercising valves means completely opening and closing the valve manually to assure they operate properly and easily. If not, they may become frozen and inoperative when isolation is necessary. Where the water carries small amounts of sand or silt, the valve seats may fill with deposited material unless operated at regular intervals to keep the valve seat clear.

When operating valves, they must be opened and closed slowly. If they are opened or closed rapidly a quick rise and fall of water pressure throughout the distribution piping system takes place. Also called a water hammer because it sounds like someone hammering on the pipe. Water hammer can cause serious damage to the distribution pipes and components. Water hammer results when a moving column of water is suddenly stopped by the closing of a valve.

FIRE HYDRANTS

Fire hydrants have a number of uses in the distribution system. Although fire protection is the most important, there are several other uses that are equally important in operating and maintaining the distribution system.

Types of Fire Hydrants
There are 2 types of fire hydrants used in water systems; wet barrel and dry barrel. A wet barrel hydrant is always pressurized and the main valve is at the top of the hydrant barrel. A dry barrel hydrant has the valve at the bottom of the barrel and a drain hole that drains the barrel when the hydrant is closed. These hydrants are used in areas where freezing occurs in the winter. An additional advantage to the dry barrel hydrant: it comes with special breakaway unions on the stem and flanges on the upper barrel that allow it to break cleanly if hit by vehicle and that there is no flow of water from a broken hydrant because the main valve is underground.

Fire Hydrant Requirements
The size of the hydrant refers to the size of the opening in the valve. For example, a 4 inch hydrant has a 4 inch valve. Hydrants can be furnished with 1 to 4, 2.5-inch nozzles and 1 to 2, 4 inch steamer nozzles. The length of the hydrant is referred to as the depth of bury and is the
distance from the surface of the ground to the bottom of the inlet pipe. It is also recommended that fire hydrants be installed with the nozzles at least 18 inches above grade. This is the clearance needed to operate a hydrant wrench when removing the nozzle. In West Virginia, fire hydrants must have a bottom valve size of at least 5 inches, on 4.5 inch pumper nozzle and 2, 2.5 inch nozzles.

Hydrant Operation and Maintenance

Regular flushing of hydrants is important to ensure that they work and are in operational condition at all times. In addition, flushing can reveal information about the condition of the water system. When the system is flushed, the velocity has to be high enough (at least 2.5 ft/sec) to clear out any material that has accumulated in the system.

Hydrants should not be used to regularly fill tanks and should never be operated with the valve partially opened for throttling. A fire hydrant should be opened slowly and fully and then closed fully, in order to prevent water hammer.

METERS

The meter is the primary piece of equipment in a water system that has a direct bearing on income. It is the cash register for the system. Many small systems do not have meters. Billing is based primarily on the size of the service and is a fixed rate. Water meters encourage conservation and distribute the cost of service in proportion to its use. Even though they are critical to maintaining the cash flow for a system, meters tend to be neglected more than any other piece of water equipment. An inaccurate meter cheats the water system and also all the customers whose meters are accurate.

When a meter becomes worn or broken it always under-registers and will give water away to the customer. This is not a good point to impress upon a customer who is sure he or she is being charged for too much water. Instead check the meter readings for the last month. It may be that an error has been made in reading the meter which can be corrected and re-reading the meter to make sure the books are straight.

Displacement Meters

The common small diameter service meter is of the displacement type. Displacement meters are capable of measuring small flows with relatively high accuracy. Water flowing through the meter is measured by counting the number of times the chamber is filled and emptied.

Velocity or Current Meters

A velocity meter, or current meter as it is more commonly called, registers the volume of water passing through it by measuring the velocity of the flow within a known cross-section area. The two basic current-meter types in use are the turbine and the propeller meters.

Compound Meters

In situations in which a customer's water use fluctuates regularly over a wide range, compound meters are used to accurately measure the water consumption. A compound meter is a combination meter with a turbine section for high flows and a displacement section for low flows. In normal operation, the low flows pass through the displacement section until the friction loss is so great that the valve opens, allowing the water to flow through the turbine section of the meter. A compound meter in good repair is capable of measuring flow with 98 percent accuracy over a wide range of flow conditions.
Meter Maintenance
Having meters installed at the customers' locations provides the only fair and equitable method of charging for water. This is one of the most economical means of reducing water waste. Meters are the "cash registers" of the water system and should be maintained in proper working order.

The maintenance of positive displacement meters consists of temporarily removing them from the customer’s service, taking them apart, and thoroughly cleaning and inspecting all parts. Meters should be inspected and tested every 10 years.

Meter Records
A suitable meter record provides full and complete information about the installation repair and testing of each meter. Any record system should provide such basic data as the date of purchase, size, make, type, location of meter, and the data on all tests and repairs.
DISTRIBUTION SYSTEM HYDRAULICS

There are a number of issues related to the dynamics of moving water through a distribution system. The pressures in the system are determined by how high water is stacked in the air when conditions are static. But when water begins to move through the system, hydraulic factors can affect pressures, flow, and forces exerted against the piping.

FRICTION LOSS
When water flows through a pipe a certain amount of energy must be expended to overcome the friction between the water and the surface of the pipe. The determination of the friction loss in a water line is dependent on four factors:

- Pipe length
- Pipe diameter
- Flow through the pipe
- Coefficient of friction—“C” factor

A certain amount of friction loss results from any flow through any size or type of pipe, and this loss must be overcome, usually by increasing the pumping pressure, in order to maintain a given flow through the pipe. As metal lines get older their inner surfaces get rougher and the “C” Factor increases. Friction losses may be reduced by pigging the lines to remove scale or tuberculation caused by chemical stability problems.

WATER HAMMER
When water, that is moving through a water line, is suddenly stopped a pressure surge will be created in the line. This occurrence is known as a “water hammer.” The faster the water movement is stopped the greater the pressure surge, or water hammer, will be. Water hammer can create a pressure surge up to 120 psi greater than the system pressure. Severe water hammer can cause ruptured lines and even lift water hydrants out of the ground. Once water hammer has been created it will travel down the line at a speed of 760 mph. To minimize the effect of water hammer all valves and hydrants in the system must be opened and closed slowly. Hydraulically operated check valves known as pump control valves also help to protect the pump and reduce water hammer. All bends and fittings on water mains should be backed by thrust blocks to protect them.

THRUST AT PIPE BENDS
Wherever a bend, elbow, tee, or dead end exists in a pipe-line having flexible joints, a force is exerted which tends to open the joints nearest the fittings. The magnitude of this force varies with the amount of bend, the diameter of pipe, and the pressure inside the pipe. When determining the resultant thrust for a given pipe it is advisable to use the maximum working pressure anticipated in the pipe plus an allowance for surges or water hammer.

Once the resultant thrust has been determined for a particular bend, it becomes necessary to provide a backing block of such size to resist the thrust. The thrust must ultimately be borne by the side of the pipe trench and the surrounding soil. The purpose of the backing block is to spread the thrust over an area sufficiently large that the undisturbed earth can support it. The supporting strength of most solid clay soils should vary between 1,500 and 4,000 pounds per square foot. Sandy soils may not support 1000 pounds per square foot.
CROSS-CONNECTIONS AND BACKFLOW

Cross-connections are points in a piping system where it is possible for a nonpotable substance to come into contact with the potable drinking water supply. They can provide a pathway for backflow of nonpotable water into potable water. Backflow occurs from negative pressure in the distribution system (termed backsiphonage) or from increased pressure from a nonpotable source (termed backpressure). Backflow from a cross-connection can affect water quality and create health problems. Cross-connections can result in serious illness and even death.

Backflow
Backflow is defined as unwanted, reversed flow of liquid in a piping system. Backflow can be caused by back-siphonage, backpressure, or a combination of the two.

Backsiphonage
Backsiphonage is backflow caused by negative (sub-atmospheric pressure) in the distribution system or supply piping. When the system pressure becomes negative, atmospheric pressure on the distribution system, water columns (from buildings or other elevated piping), or other pressure sources will cause the direction of flow within portions of the system to reverse. If a cross-connection exists in the area where flow reverses direction, contaminants can be siphoned into the distribution system. The effect is similar to sipping a soda by inhaling through a straw.

Backpressure
Backpressure is backflow caused when the distribution system is connected to a nonpotable supply operating under a pressure higher than the distribution system, the direction of flow will reverse if there is no mechanism to stop the flow. A pump, boiler, elevation difference, or other means can create the higher pressure.

METHODS USED TO PROTECT AGAINST CROSS-CONNECTIONS

There are 5 basic assemblies/devices which are used to prevent or reduce the possibility of backflow in cross-connections: air gaps, atmospheric vacuum breakers, pressure-type vacuum breakers, double check valve assemblies, and reduced pressure backflow preventers.

Air Gap
Of the 5 assemblies/devices listed, the air gap (physical separation of the potable and nonpotable systems by an air space) is most reliable backflow prevention measure to use when there is potential for a cross connection to an extreme hazard. The vertical distance between the supply pipe and the flood-level rim should be two times the diameter of the supply pipe, but never less than one inch. This type of backflow prevention can be used in situations in which potable water runs into a tank or a source, which is under atmospheric pressure. Obviously, this type of backflow prevention method cannot be used for a direct connection to a pressurized system.

Atmospheric Vacuum Breakers
Atmospheric Vacuum Breakers (AVB) do not prevent backflow due to backpressure. They must be installed on the discharge side of the last control valve. They must be installed 6 inches above the rim of the fixture they serve. In addition, they cannot be used under continuous pressure for
a period of 8 hours or more. Atmospheric vacuum breakers are usually used with hose bibs or sillcocks in situations in which a hose is attached to a sprinkler system or is draining into a tank. Atmospheric vacuum breakers cannot be tested at any time.

Pressure Vacuum Breakers
Pressure vacuum breakers (PVB) are similar to atmospheric vacuum breakers except that these devices can be used under continuous pressure. They cannot prevent backflow due to backpressure and must be installed above the usage point to prevent backsiphonage. They must be installed at least 12 inches above the rim of the device that they are protecting.

Double Check Valve Assemblies
Double check valve assemblies (DCVA) are used for a direct connection between 2 potable water systems. These assemblies may be used to protect against both backsiphonage and backpressure. They can be used under continuous pressure but cannot be used to connect to a contaminated or high-hazard system. The assembly consists of 2 ordinary spring-loaded or balance-weight-assisted swing check valves mounted in series. They offer only a partial degree of protection because particles can prevent proper seating of the valves causing them to leak. Double check valves protect against backpressure and back-siphonage conditions. Once installed, they can be tested.

Reduced Pressure Principal Backflow Preventers
The reduced pressure principal (reduced pressure zone) backflow preventer (RPZ) provides the greatest protection against backflow caused by backpressure and backsiphonage. The RPZ can be used under continuous pressure and in high-hazard conditions. The RPZ is designed so it will operate even if both the check valves become fouled. A reduced pressure backflow preventer consists of 2 check valves with a zone of reduced pressure between the check valves. The reduced pressure chamber also has a spring-differential pressure relief valve.

Such a backflow preventer can be put on each water line that is used to fill tank trucks. Many private facilities in communities allow farmers or others needing water to fill their tanks. These facilities should be inspected for approved backflow prevention assemblies/devices. In addition, the city must not allow tanks to fill from hydrants, which are not protected by backflow prevention equipment.

Thermal Expansion
When water is heated it expands in volume. Water in a residential water heater may expand about one-half gallon during each recovery period. In an open system this water will be easily absorbed. However, if a backflow preventer is placed in the service line to a residence it will create a closed system with no room for expansion. Since water is not compressible, it has to go someplace and that is generally out the water heater pressure relief valve. This is a dangerous situation since these relief valves are not designed for frequent operation. In addition, the pressures generated may cause an explosion.

Operators need to recognize the implication of placing a backflow preventer or a check valve upstream of a water heater. If this must be done, installation of a small thermal expansion tank between the water heater and backflow preventer is the simple solution.
Inspection and Testing

All backflow prevention assemblies must be tested by a Certified Backflow Assembly Tester at the time of installation, repair, or relocation, and at least on an annual schedule thereafter.

For more information, please refer to the:

- [Cross-Connection Fact Sheet](#) included.

INSTRUMENTATION

Like any other business, a water system spends a great deal of money on infrastructure and capital improvements. These expenses include piping, storage and all of the mechanical equipment required to produce, treat, and deliver water. A maintenance program is essential to insuring that the mechanical components of the system stay in good working order and provide the longest possible service life. A preventive maintenance schedule should be utilized to make sure that each piece of equipment gets the proper attention. Most preventive maintenance consists of inspecting, cleaning, and lubricating the equipment. The equipment operators can usually complete these tasks. Specially trained personnel that possess the necessary mechanical skills should handle major maintenance, including component replacement and overhaul.

Instrumentation in water systems allows the operator to maintain and monitor water levels, flows, pressures, and chemical feed rates at a distance. This use of telemetry gives constant readings of changes in the system and allows operational changes to be made from remote locations. This allows the operator to maintain better control and respond more quickly to changes in the process. The best instruments are those that provide stability, accuracy, and repeatability when monitoring these parameters. Instrumentation equipment can range from simple devices like float switches and pressure gauges to complex systems like on-line chemical analyzers.

Instrumentation is usually set up as either a “feed forward” or a “feedback” loop. An example of a feed forward loop would be a venturi flow meter sending a signal to change a chlorine dosage based on a change in well field flow. The meter would be located forward of the chlorine feed point and change the stroke when the flow changed. An example of a feedback loop would be a chlorine analyzer changing the chlorine dosage based on a change in residual downstream of the chlorinator. It would be located downstream and feed the information back to the chlorinator.

Three things determine the rate at which an instrument makes a change in the process. One is the amount of change for each reading. This is referred to as the span. Another is how often readings are taken. This is called the rate. The third is the deadband. Deadband means that there is a range around the setpoint where no action is taken. For instance, a chemical feed instrument may be set to maintain a pH of 7.0. But the deadband may be set so that no action is taken until the pH rises to 7.2 or falls below 6.8. If the rate is too fast or the span too large, the control conditions may fluctuate as the instrumentation “hunts” for the setpoint.
Supervisory Control and Data Acquisition (SCADA) refers to a system that collects data from various sensors at a plant or in other remote locations and then sends this data to a central computer which then manages and controls the data. As the name indicates, it is not a full control system, but rather focuses on the supervisory level. As such, it is a purely software package that is positioned on top of hardware to which it is interfaced, in general via Programmable Logic Controllers (PLCs), or other commercial hardware.

Data Acquisition
Data acquisition refers to the method used to access and control information or data from the equipment being controlled and monitored. The data accessed are then forwarded onto a telemetry system ready for transfer to the different sites. They can be analog and digital information gathered by sensors, such as flowmeter, ammeter, etc. It can also be data to control equipment such as actuators, relays, valves, motors, etc.

Operational Considerations
SCADA can be used to monitor and control plant or equipment. The control may be automatic, or initiated by operator commands. The data acquisition is accomplished firstly by the remote terminal units (RTUs) scanning the field inputs connected to the RTU (RTU may also be called a PLC - programmable logic controller). This is usually at a fast rate. The central host will scan the RTU's (usually at a slower rate.)

The data is processed to detect alarm conditions, and if an alarm is present, it will be displayed on special alarm lists. Data can be of three main types. Analogue data (i.e. real numbers) will be trended (i.e. placed in graphs). Digital data (on/off) may have alarms attached to one state or the other. Pulse data (e.g. counting revolutions of a meter) is normally accumulated or counted.

The primary interface to the operator is a graphical display (mimic) usually via a personal computer screen which shows a representation of the plant or equipment in graphical form. Live data is shown as graphical shapes (foreground) over a static background. As the data changes in the field, the foreground is updated. A valve may be shown as open or closed. Analog data can be shown either as a number, or graphically. The system may have many such displays, and the operator can select from the relevant.

One of key processes of SCADA is the ability to monitor an entire system in real time. This is facilitated by data acquisitions including meter reading, checking statuses of sensors, etc that are communicated at regular intervals depending on the system. Besides the data being used by the RTU, it is also displayed to a human that is able to interface with the system to override settings or make changes when necessary.

In West Virginia, Environmental Health Procedures DW-36 outlines Operator Variance Permits for qualifying and approved PWSs who automate their systems (automatic dialers and automatic equipment shut down). In general, an OVP requires: a minimum one (1) year continuous operation before OEHS would consider issuing and a PWS classification level of Class II or higher. These types of PWS variances are handled by the Environmental Engineering Division of OEHS.
BASIC LABORATORY EQUIPMENT

Equipment listed below is applicable for both surface water and groundwater plants:

(1) Colorimeter or Spectrophotometer capable of performing various tests to determine the chemistry of both raw and finished water. Tests could include; chlorine (free and total); iron, manganese (high and low range); aluminum; nitrates; phosphorus; fluoride; zinc; and pH. A good colorimeter or spectrophotometer should be capable of performing all of the tests listed in addition to several other parameters which could be applicable to the plant. Contact the WV Department of Health to determine the parameters required. Most manufacturers’ and suppliers offer technical assistance.

(As required) Reagents for tests to be performed with the colorimeter or spectrophotometer, EPA approved if possible.

(1) Bench type pH Meter, preferably with temperature compensation. The pH meter should include a stand for the probe and an electric stirrer. Also, a supply of pH 4, pH 7, and pH 10 buffer solutions should be on hand for calibrating the meter.

(1) Thermometer, -10 to 110 °C.

(As required) Alkalinity, Hardness, and Carbon Dioxide tests usually performed using one of two titration methods. The digital titrator method requires a digital titrator and the appropriate reagent set. The buret method may be purchased as complete outfit, or separately. When purchased separately the following items are required: buret support with large white porcelain base and a buret holder for assembling and steadying automatic burets. Each separate test will require one automatic buret, with stopcock, 50 mL or 100 mL, complete with rubber bulb and reservoir and, the appropriate reagents for each test.

(1) Balance, general laboratory, triple beam, in grams.

(1) Set, technical weights, metric, class C, 1 gram to 1,000 gram for balance calibration.

(1) Stopwatch.

(6) Measuring pipettes 10.0 mL capacity, 0.1 mL subdivisions.

(6) Measuring pipettes 1.0 mL capacity, 0.01 mL subdivisions.

(2) Pipette fillers.

(2) Graduated cylinders, 100 mL capacity, 1.00 mL subdivisions.

(1) Graduated cylinders, 500 mL capacity, 5.00 mL subdivisions.
(1) Graduated cylinders, 1,000 mL capacity, 10.00 mL subdivisions.

(4) Erlenmeyer flasks, 250 mL, wide mouth.

(4) Casserole, porcelain, 210 mL.

(6) Glass stirring rods, 3 mm diameter.

The following items are required in plants treating surface water, or in plants using groundwater under the influence of surface water. These items are in addition to the equipment already listed.

(1) Turbidimeter.

(As required) Primary turbidity standards. Turbidimeters must be standardized using standards approved by the WVDHHR. At this time only Formazin, which you prepare as needed, and AEPA-1, already prepared but expensive, have been approved. The sealed Gelex standards which are furnished with most turbidimeters are to be used as secondary standards only, and must be checked against either Formazin or EPA-1.

(1) Six position stirring apparatus for “jar tests” with variable speed control and light base.

(6) Griffin beakers, 1,000 mL for “jar tests”.

Laboratory Facilities

Adequate laboratory space must be made available. As a guideline there should be approximately 150 to 200 square feet per person, regardless of tests. There should be approximately 15 linear feet of usable bench space including a sink with hot and cold water taps. Raw and post-settling water taps should be provided in the lab area for quality control monitoring. Sufficient electrical outlets must be provided for operating the lab equipment.

Glassware

The glassware purchased for lab use should be composed of Pyrex or Kimax type glass. This type of glass is more resistant to damage by heat, chemicals and abuse than regular soft glass. All volumetric glassware should be marked “Class A”, denoting that it meets federal specifications for volumetric glassware and need not be calibrated before use.

This list includes only the MINIMUM equipment needed to properly operate a water treatment plant. Every water plant is different and may need additional items. However, before purchasing large quantities of unknown lab equipment (as in a new plant) contact the WVDHHR.

Because of the difference in suppliers specific reagents are not listed. The manufacturer of lab equipment will provide a list of reagents that is compatible with their products.

Equipment & Techniques

Accurate measurement is necessary to make standard solutions and reagents. The volumetric flask should be used when the final volume of a solution is specified such as 1,000 mL rather than 1 L or when the used of the flask is specified.
Volumetric flasks are squat bottles with long necks. The neck is marked with a line to indicate the volume it contains.

Volumetric pipettes are used to accurately measure quantities of solutions for diluting to desired strengths. These pipettes are also used to add known volumes of solutions to other solutions. These pipettes are made to deliver specific volumes such as 1, 2, 5, 10 or 25 mL. The pipette is filled to above the zero mark by suction (rubber bulb). The upper end is closed by the index finger and the liquid is gradually lowered to the line by releasing finger pressure on the top. The liquid is allowed to low into the receiving vessel by removing the finger completely form the top of the pipette. The tip of the pipette must touch the inside of the receiving vessel. The pipette is allowed to drain completely. If a pipette is marked TD (to deliver), do not blow out the last drop of liquid remaining after the pipette drains. If a pipette is marked TC (to contain), blow out the last drop into the receiving vessel.

Mohr pipettes are glass tubes graduated to deliver various quantities of solution up to the volume of the pipette. These pipettes are usually graduated to read 0.1 mL amounts. The pipette is filled in the same way as the volumetric pipette. The liquid level is lowered to the zero line. The desired amount of liquid is allowed to flow from the pipette to the desired volume slowly by releasing partial finger pressure on the top of the pipette and applying again when the desired volume is reached.

Graduated cylinders, commonly called graduates, are calibrated to measure up to 10, 25, 50, 100 and even 1,000 mL. Graduated cylinders are not as accurate as volumetric flasks and must not be used as a substitute for them. Graduated cylinders are used to measure “approximately accurate” volumes.

Burets are glass tubes graduated over their length from 1 to 10, 25, or 50 mL, usually in 0.1 mL increments. The tube has a valve at the lower end and a small tip like a pipette below the valve. The buret is used by clamping it onto a support stand, pouring the standard solution from a beaker into the op of the buret to well above the zero line and carefully draining the surplus solution out until the meniscus reaches zero. All air must be expelled from the valve and tip. Standard solution is added to the sample by opening the valve at the bottom. Solution may be added drop wise, full flow or just a fraction of a drop by manipulating the valve. Safety bulbs and pipette fillers are used to fill pipettes. Never fill a pipette with any liquid by mouth suction. Some pipette fillers may be left attached to the pipette during the zeroing and draining (measuring) procedures.

Because liquid adheres to the glass walls of burets, pipettes, graduated cylinders, and volumetric flasks, the surface of the liquid forms a curve, known as the meniscus. Therefore, when reading all volumetric glassware, always read from the bottom of the curve, at eye level.

There are many types of balances and scales that may be used in a water laboratory. Rough balances and scales are used to weigh masses up to about one kilogram (kg) or 2 pounds (lbs) with accuracy of only about 0.1 grams (g) or more. Analytical balances usually weigh up to 200 g with an accuracy of 0.1 mg. The analytical balance, essential for preparing standard solutions, determining suspended mater, and conducting any test that requires accurate weighing of 0.1 mg to 200 g, is a delicate and expensive instrument and should be treated with care. No chemical is ever weighed directly on the balance pan; instead, it is put into a weighing bottle, crucible, watch
glass, plastic or foil weighing pan; or weighing paper. Any article to be weighed must be at room temperature. This may require cooling or warming in a dessicator prior to weighing.

The above items cover the common glassware and laboratory equipment in common use in the average water treatment plant. Other equipment such as spectrophotometers and specialized glassware are used in some laboratories, but are beyond the scope of this class. The operator must refer to the manufacturer’s instructions for the proper use of this equipment.

One thing that must be understood is how to properly clean glassware. No matter how the glassware is cleaned, it must be rinsed thoroughly. All glassware may be washed with laboratory detergents provided that they are rinsed with large volumes of distilled or deionized water. All glassware must be cleaned after each use and be kept clean in order to be used effectively. A sure sign that volumetric glassware needs to be cleaned is the absence of a meniscus when a solution is poured into the glassware. If, when the glassware is rinsed and drained, there are any drops of water adhering on the sidewalls of the glassware, it is not clean and the cleaning process must be repeated.

Techniques
The following are some techniques for using various pieces of lab equipment that will demonstrate the efficiency and the maximum benefit of the equipment.

Pouring a solution form one vessel to another without spatter is sometime difficult. One method that can be used to pour from a beaker, flask or other container, is to place a glass stirring rod held against the lip of the pouring vessel. The liquid will flow down this rod without spatter or dribble.

In reading a buret, an index card with the bottom half painted black (a felt tipped marker works well) will aid in reading the bottom of the meniscus. The method of reading is thus: Hold the index card behind the buret with the division line about one eighth inch below the bottom of the meniscus. Center your eye on the bottom of the meniscus. The dark portion of the card will cause the meniscus to appear black and distinct. Reader the upper encircling division for the full mL reading. Count these short division lines from the top down to the bottom of the meniscus. Each such division represents 0.1 mL.
Importance of Good Sampling Procedures
The importance of obtaining samples by proper methodology cannot be emphasized enough. Proper sampling is a vital part of protecting the water supply. Without proper sampling techniques the laboratory data obtained from tests conducted on those samples are meaningless, and more importantly, any maintenance of the water supply based on that data could result in a situation which would endanger human health.

Representative Sampling
Remember, with sampling a small quantity of water is being used to evaluate a great quantity of water. Every precaution must be taken to ensure that the small quantity is a good representative sample of the greater quantity. A representative sample is a sample portion of material or water that is as nearly identical in content and consistency as possible to that in the larger body of material or water being sampled.

Grab Sampling
A grab sample is a single water sample collected at no specific time. A grab sample only represents the characteristics of that particular sample at that particular time. There may be times when a grab sample is preferred over a composite sample. These situations may include the following:
- The water to be sampled does not flow continuously;
- The characteristics of the water are relatively constant; and
- The water needs to be tested for water quality indicators that may change with time, such as dissolved gases, coliform bacteria, residual chlorine, temperature and pH.

Composite Sampling
A composite sample is a collection of individual samples obtained at regular intervals over a 24-hour period. The combined sample (the composite sample) forms a single larger representative sample and is analyzed to determine the average conditions during the sampling period. If the individual samples are combined in proportion to the rate of flow when the sample was collected, then it is called a flow proportional composite sample.

Sampling Locations
Sampling location usually depends on the type of system and the analyses required. The sampling locations to be used and the rationale behind selecting the sites are to be presented in a sample-site plan, which is to be submitted to the State for approval.

Water Taps
To collect samples from taps connected to water mains the service line must be flushed for a brief period of time before collecting the sample. The following precautions should be taken:
- Do not take samples from drinking fountains, restrooms, or taps with aerators.
- Do not take samples from taps surrounded by excess foliage such as leaves or flowers.
- Do not take samples from taps that are dirty, corroded, or are leaking.
- Never collect a sample from a hose or other attachment fastened to a faucet.
• Care should be taken that the person collecting the sample does not touch the faucet in any way that could contaminate the sample.

Sometimes, as in the collection of samples for lead and copper testing, a ‘first draw’ or ‘first flush’ sample will be required. For this, the water needs to stand in the pipes undisturbed for at least six hours before the sample is drawn. No water is flushed from the faucet before the sample is collected. Usually, this sample will be taken first thing in the morning before any water has been used.

Distribution Systems

The most representative samples of the water supply would be taken from the water main before any branching off occurs. Analyses of water main samples can be compared to analyses of tap samples to help pinpoint a possible problem for instance.

Sampling points should be selected so that the pathway of water from the source to the endpoint will be represented. Ideal sampling locations are those that provide a short, direct connection with the main and are made of corrosion-resistant material. Not just any faucet will do, and fire hydrants are not acceptable due to how they are constructed and their infrequent use. Allow the water line to flush long enough to replace the water in the lines twice. About 5 minutes is usually sufficient. Do not turn the faucet on wide open to make flushing quicker as this will stir up any deposits in the lines.

Sampling Containers, Preservation and Holding Times

The type of container used for collecting a sample depends on what tests need to be conducted on that collected sample. The Code of Federal Regulations, Protection of Environment, CFR 40, Part 136.3 contains a complete list of analyses that can be conducted along with information on approved sample containers, volume required, preservatives and maximum holding time between sampling and analysis.

The container must be clean and will usually be supplied by the laboratory performing the analysis. The container must be clearly labeled and at a minimum contain the following information:

- PWS ID Number
- Sample location
- Sample date
- Time of collection (exact time)
- Name of collector
BASIC SAMPLING PROCEDURES

Basic Sampling Procedures
The way you collect, store and transport your drinking water test sample affects the accuracy of your test results. Improper handling may show signs of drinking water contamination where it may not truly exist. The certified laboratory you have hired will give you detailed instructions for handling a drinking water test sample, including:

- Collection procedures;
- Containers to use, including those supplied by the laboratory;
- Labeling of samples;
- Completion and chain of custody forms;
- Transportation of samples; and
- Time periods for delivery of samples.

Carefully follow the instructions from the laboratory to ensure accurate results.

Location of sampling points
One objective of sampling is to assess the quality of the water supplied by the water purveyor and the point of use, so that samples of both should be taken. Any significant difference between the two has important implications for remedial strategies.

Samples must be taken from locations that are representative of the water source, treatment plant, storage facilities, distribution network, points at which water is delivered to the consumer, and points of use. In selecting sampling points, each locality should be considered individually; however, the following general criteria are usually applicable:

- Sampling points should be selected such that the samples taken are representative of the different sources from which water is obtained by the public or enters the system.
- These points should include those that yield samples representative of the conditions at the most unfavorable sources or places in the supply system, particularly points of possible contamination such as unprotected sources, loops, reservoirs, low-pressure zones, ends of the system, etc.
- Sampling points should be uniformly distributed throughout a piped distribution system, taking population distribution into account; the number of sampling points should be proportional to the number of links or branches.
- The points chosen should generally yield samples that are representative of the system as a whole and of its main components.
- Sampling points should be located in such a way that water can be sampled from reserve tanks and reservoirs, etc.
- In systems with more than one water source, the locations of the sampling points should take into account the number of inhabitants served by each source.
- There should be at least one sampling point directly after the clean-water outlet from each treatment plant.

Analytical quality assurance and quality control
Standard methods for drinking-water analysis should be tested under local conditions for accuracy and precision, agreed at national level, and applied universally by both water-supply and regulatory agencies. However, the use of standard methods does not in itself ensure that reliable and accurate results will be obtained.
In the context of analytical work, the terms quality assurance and quality control are often treated as synonymous. In fact, they are different concepts. Analytical quality control is the generation of data for the purpose of assessing and monitoring how good an analytical method is and how well it is operating. This is normally described in terms of within-day and day-to-day precision.

Analytical quality assurance, by contrast, comprises all the steps taken by a laboratory to assure those who receive the data that the laboratory is producing valid results. Quality assurance thus encompasses analytical quality control but also includes many other aspects such as proving that the individuals who carried out an analysis were competent to do so, and ensuring that the laboratory has established and documented analytical methods, equipment calibration procedures, management lines of responsibility, systems for data retrieval, sample handling procedures, certification, and so on.

Field Analysis and Field Instruments

All field instruments should be calibrated according to the manufacturer’s instructions prior to field use and documented in a calibration notebook to be kept with the instrument. Operation of field equipment varies depending on the manufacturer. Care must be taken to assure that each instrument is functioning properly and calibrated according to any calibration schedule.

Field measurements should be made in accordance with equipment manufacturer’s instructions and at appropriate times and locations so that valid information is obtained.

Chain of Custody Procedure

Procedures for Chain of Custody (COC) require maintenance of permanent records for all sample handling and shipment. COC procedures must be used to ensure sample integrity as well as legal and technically defensible data.

Any samples collected must be submitted with a COC form and a signed affidavit. The lab has stated that one COC form per shipping container (ice chest) is sufficient. The COC form must have each analysis request checked and show a range of collection times.

The sample should be kept in view or in locked storage until custody is relinquished to the shipper and formal documentation of the transfer is completed. The person collecting a sample will start the COC procedure.

In completing the tag, care should be taken to insure that all necessary information is correct and legibly written on the tag with a black waterproof ink pen. The use of a fine point pen is discouraged because of possible problems in making legible photostatic copies.

Shipping of Samples

The water system is responsible for shipment of all routine samples to the laboratories so that analyses can be conducted in accordance with EPA methods. Each sample must be accompanied by a COC form.

When a sample is shipped to the laboratory, it must be packaged in a proper shipping container to avoid leakage and/or breakage. The laboratory must be able to associate each container in the ice chest with a COC form.
COC forms or other documents should be shipped inside the ice chest and must be placed in a plastic bag to prevent water damage. A good method is to use a zip-lock bag taped to the inside of the ice chest lid. All shipping boxes must be taped closed with shipping tape, strapping tape or fiber plastic tape, etc.

The complete address of the sender and the receiving laboratory must legibly appear on each container. When sent by U.S. Mail, register the package with a return receipt requested. When sent by a shipping service, obtain a copy of the bill of lading. Post office receipts and bills of lading may be used as part of the COC documentation.

Certified laboratories must conduct analyses within the prescribed holding times in order to produce valid compliance results. An even flow of samples must be maintained into the labs throughout each sampling period so as to assure that the laboratory capacity is not exceeded. This will require that the Contractor and each shipper carefully plan and coordinate the collection and shipment of samples. Samples must be shipped on a routine daily basis.

It is far better to spend extra funds on ice and shipping costs than to have an entire shipment of samples rejected at the lab because of the failure to meet temperature requirements due to ice melt.

How to store your sample and send it to the laboratory

- **Submit your drinking water test sample to the certified laboratory as quickly as possible after collection.** To give the most accurate results, testing for bacteria must begin within 30 hours of collecting the drinking water sample. Be sure to obtain clear instructions from the laboratory regarding sample submission drop-off time.
- **Refrigerate samples until ready for shipping.**
- **Ship your sample bottles or containers to the laboratory in coolers, or in foam pack containers, with ice or ice packs.** Don’t pack the bottles with loose ice as this may contaminate the sample. If you only have loose ice, encase the sample/container in waterproof packaging or a sealed container. Be sure it is well protected from other samples that you may be sending to the laboratory at the same time (e.g. sewage samples).
- **Don’t allow samples to freeze.** In winter, you may want to take advantage of heated shipping offered by some courier companies.
- **Package the completed COC form, provided by the certified laboratory, with the collected sample.** If sending it inside the cooler containing the sample, ensure that the form is enclosed inside a waterproof package (e.g., a new zip-lock bag).

Safety for Laboratory Personnel

The safety of staff undertaking analytical procedures, both in the field and in the laboratory, is of the greatest importance. All staff should be trained in safety procedures relevant to their work. In the laboratory, individual staff members should be authorized to undertake procedures involving risk of any type only after appropriate training; unauthorized staff should not be allowed to undertake analyses.

All laboratories should formulate and implement a safety policy that should cover cleaning, disinfection, and the containment of hazardous substances. Safety equipment such as fire extinguishers, safety glasses, and first-aid kits should be suitably located, and readily available; they should be routinely checked and all staff should be trained in their use.
Sampling Safety - Preservation Chemicals

Acids of various types are the most common sample preservation materials that may pose a risk or hazard. Preservation chemicals must be handled with care and all appropriate safety procedures followed. You may feel that safety precautions are a burden; however, no amount of compensation can replace an eye or other body part damaged by acid. Material Safety Data Sheets are available wherever chemicals are stored.

It is your responsibility to use appropriate eye, hand, and clothing protection.

Also, if you are shipping samples that you know or suspect as a health hazard, include a warning note or letter in an appropriate location on the shipping container to minimize laboratory personnel exposure to an unknown health hazard.
Procedure for Measuring pH

Presently, pH measurements are part of routine tests done to check potable water quality. pH can be measured in several ways, of which 2 are widely used. One, simple and often precise enough, is the use of colorimetric (spectroscopic) methods. Second, more costly and more demanding in terms of procedure that have to be used, but giving much more precise results - is a potentiometric method with usage of pH electrodes and pH meters. pH measurements should be reported to +/- 0.1 units.

Colorimetric Method
The colorimetric method uses a sulfonphthalein indicator (Phenol Red) to determine pH based on color intensity of the chemical reaction. Phenol Red has a working range of pH 6.8 (yellow) to 8.2 (red). This is an indicator test, using a comparator. This test is the quickest and simplest method for testing pH. With this test, the reagent is added to a sample of water, coloring it red. The strength of color is measured against standard colors to determine the pH concentration. The stronger the color, the higher the concentration of pH in the water. Several kits for analyzing the pH in water are available commercially. The kits are small and portable.

1. Analyze samples for chlorine immediately after collection.
2. Fill a sample cell with 10 mL of sample (the blank).
3. Place the blank in the cell holder. Tightly cover the sample cell with the instrument cap.
4. Zero the instrument.
5. Fill another cell with 10 mL of sample.
6. Using a disposable dropper, add 1 mL of Phenol Red Indicator Solution to the cell (the prepared sample). Cap the sample cell and invert twice to mix.
7. Place the prepared sample into the cell holder. Tightly cover the sample cell with the instrument cap.
8. Analyze the results.

Potentiometric Method
Depending on the pH meter and the electrode used, procedures can look slightly different, but in most cases pH measurement procedures will be at least very similar. First of all - remember, that the electrode should be always immersed. Thus between pH measurements it should be put into a beaker with pH buffer (preferably 7.0) or - much better - KCl solution (0.1M to 1M). Don't worry that you will destroy the electrode moving it between solutions. It can easily survive minute in the air, but don't let it dry. Second, equally important thing is - the electrode is very fragile, and thus you should treat your electrode with care.

Ensure that pH meter is on. If you want high precision of measurements it is better to let the pH meter to warm up to ensure it will not drift later. Before every single pH measurement, or before any series of uses, you must calibrate (standardize) the pH electrode. To calibrate the electrode you need at least two solutions (buffers) of known pH values which should bracket the pH of the sample. The most commonly used commercially available calibration buffers have pH of 4.01, 7.00 and 10.00. Rinse the electrode with distilled water from a wash bottle into an empty beaker before immersing it into new solution. You should do it every time electrode is moved from one solution to other to minimize contamination. Check if the working part of the electrode is completely immersed in the buffer. Take care to not hit bottom of the baker with the electrode. Wait for the reading to stabilize (it takes seconds usually, up to a minute sometimes). After
calibration you are ready to measure pH. Rinse the electrode with distilled water and submerge it in the tested solution. Read the result and write it down in your lab notebook. Rinse the electrode and move it to the storage beaker.

Please remember, that above outline is very general. Different pH meters may require slightly different operating procedures. You should consult the manufacturer’s manual to be sure how to proceed and how to maintain the electrode.
Procedure for Testing Free Chlorine Residual (using DPD Method)

The method recommended for the analysis of chlorine residual in drinking water employs \(N,N\)-diethyl-\(p \)-phenylenediamine, more commonly referred to as DPD. This is an indicator test, using a comparator. This test is the quickest and simplest method for testing chlorine residual. With this test, the reagent is added to a sample of water, coloring it red. The strength of color is measured against standard colors to determine the chlorine concentration. The stronger the color, the higher the concentration of chlorine in the water. Several kits for analyzing the chlorine residual in water are available commercially. The kits are small and portable.

Sample Collection, Storage and Preservation

1. Analyze samples for chlorine immediately after collection.
2. Free chlorine is a strong oxidizing agent and it is unstable in natural waters. It reacts rapidly with various inorganic compounds and more slowly oxidizes organic compounds.
3. Many factors, including reactant concentrations, sunlight, pH, temperature, and salinity influence decomposition of free chlorine in water.
4. Avoid plastic containers since these may have a large chlorine demand.
5. Pretreat glass sample containers to remove any chlorine demand by soaking in a dilute bleach solution (1 mL commercial bleach to 1 liter of deionized water) for at least 1 hour. Rinse thoroughly with deionized or distilled water.
6. If sample containers are rinsed thoroughly with deionized or distilled water after use, only occasional pre-treatment is necessary.
7. Do not use the same sample cells for free and total chlorine. If trace iodide from the total chlorine reagent is carried over into the free chlorine determination, monochloramine will interfere.
8. It is best to use separate, dedicated sample cells for free and total chlorine determinations.
9. A common error in testing for chlorine is not obtaining a representative sample.
10. If sampling from a tap, let the water flow for at least 5 minutes to ensure a representative sample.
11. Let the container overflow with the sample several times, then cap the sample containers so there is no headspace (air) above the sample.
12. If sampling with a sample cell, rinse the cell several times with the sample, the carefully fill to the 10-mL mark.
13. Perform the chlorine analysis immediately.
14. After adding reagent to the sample cell, a pink color will develop if free chlorine is present.
15. If the test overranges, dilute the sample with a known volume of high quality, chlorine demand-free water and repeat the test. Some loss of chlorine may occur due to the dilution. Multiply the result by the dilution factor.
16. Wipe the outside of sample cells before each insertion into the instrument cell holder. Use a damp towel followed by a dry one to remove fingerprints or other marks.
17. Place the sample cell into the cell holder.
18. Fill a second round cell with 10 mL of sample.
19. Add the contents of one DPD Free Chlorine Powder Pillow to the sample cell. (This is the prepared sample).
20. Swirl the sample cell for 20 seconds to mix.
21. **Within one minute** of adding the reagent, place the prepared sample into the cell holder.
22. Compare results.

Procedure for Testing Total Chlorine Residual (using DPD Method)

The method recommended for the analysis of chlorine residual in drinking water employs N,N-diethyl-p-phenylenediamine, more commonly referred to as DPD. This is an indicator test, using a comparator. This test is the quickest and simplest method for testing chlorine residual. With this test, the reagent is added to a sample of water, coloring it red. The strength of color is measured against standard colors to determine the chlorine concentration. The stronger the color, the higher the concentration of chlorine in the water. Several kits for analyzing the chlorine residual in water are available commercially. The kits are small and portable.

Sample Collection, Storage and Preservation

1. Analyze samples for chlorine immediately after collection.
2. Free chlorine is a strong oxidizing agent and it is unstable in natural waters. It reacts rapidly with various inorganic compounds and more slowly oxidizes organic compounds.
3. Many factors, including reactant concentrations, sunlight, pH, temperature, and salinity influence decomposition of free chlorine in water.
4. Avoid plastic containers since these may have a large chlorine demand.
5. Pretreat glass sample containers to remove any chlorine demand by soaking in a dilute bleach solution (1 mL commercial bleach to 1 liter of deionized water) for at least 1 hour. Rinse thoroughly with deionized or distilled water.
6. If sample containers are rinsed thoroughly with deionized or distilled water after use, only occasional pre-treatment is necessary.
7. Do not use the same sample cells for free and total chlorine. If trace iodide from the total chlorine reagent is carried over into the free chlorine determination, monochloramine will interfere.
8. It is best to use separate, dedicated sample cells for free and total chlorine determinations.
9. A common error in testing for chlorine is not obtaining a representative sample.
10. If sampling from a tap, let the water flow for at least 5 minutes to ensure a representative sample.
11. Let the container overflow with the sample several times, then cap the sample containers so there is no headspace (air) above the sample.
12. If sampling with a sample cell, rinse the cell several times with the sample, the carefully fill to the 10-mL mark.
13. Perform the chlorine analysis immediately.
14. After adding reagent to the sample cell, a pink color will develop if free chlorine is present.
15. If the test overranges, dilute the sample with a known volume of high quality, chlorine demand-free water and repeat the test. Some loss of chlorine may occur due to the dilution. Multiply the result by the dilution factor.
16. Wipe the outside of sample cells before each insertion into the instrument cell holder. Use a damp towel followed by a dry one to remove fingerprints or other marks.
17. Place the sample cell into the cell holder.
18. Fill a second round cell with 10 mL of sample.
19. Add the contents of one DPD Total Chlorine Powder Pillow to the sample cell. (This is the prepared sample).
20. Swirl the sample cell for 20 seconds to mix.
21. **Wait 3 minutes** after adding the reagent and place the prepared sample into the cell holder.
22. Compare results.

Procedure for Testing Turbidity (using Nephelometric Measurement)

2100N and 2100AN Turbidimeters
The optical system is comprised of a tungsten-filament lamp, lenses and apertures to focus the light, a 90-degree detector, forward-scatter light detector, a backscatter detector (2100 AN only), and a transmitted-light detector. The instrument permits turbidity measurements at less than 40 NTU to be performed using only the 90 degree scattered-light detector or 4000 NTU (2100N) to 10,000 NTU (2100AN) using the complete set of detectors (Ratio Measurement). With the Ratio Measurement on, the instrument's microprocessor uses a mathematical calculation to ratio signals from each detector. The benefits of using Ratio on for measurements include excellent linearity, calibration stability and the ability to measure turbidity in the presence of color.

The 2100N and 2100AN Turbidimeters are equipped with a stable halogen-filled, tungsten filament lamp to meet the reporting requirements of EPA Method 180.1.

Sample Collection, Storage and Preservation
1. Collect a representative sample in a clean container. Fill the sample cell to the line (approximately 30 mL). Take care to handle the sample cell by the top. Cap the sample cell.
2. Hold the sample cell by the cap, and wipe to remove water spots and finger prints.
3. Apply a thin bead of silicone oil from the top to the bottom of the cell—just enough to coat the cell with a thin layer of oil. Using the oiling cloth provided, spread the oil uniformly. Then, wipe off the excess. The cell should appear nearly dry with little or no visible oil.
4. Place the sample cell in the instrument cell compartment, and close the cell cover.
5. Read and record the results.
6. If samples cannot be analyzed immediately, they may be stored at <4 °C for up to 48 hours. When refrigerated, samples must be allowed to warm to room temperature before analysis.

Calibration
When data is used for EPA reporting, recalibrate at least every 90 days, or as stipulated by the regulating authority.

Preparing Recommended Formazin Dilutions
Hach Company recommends use of 20-, 200-, 1000- and 4000-NTU Formazin standards for calibration of the Model 2100N Turbidimeter. Prepare all Formazin dilutions immediately before calibration, and discard the dilutions after use. While 4000-NTU stock solutions are stable for up to one year, diluted solutions deteriorate more rapidly. The dilution water also is used to make an initial blank measurement.

Using Gelex Secondary Turbidity Standards
Periodically, as experience or regulating authorities indicate, verify the instrument calibration using Gelex Secondary Standards. If the reading in the range of use is not within 5% of the standard’s assigned value, recalibrate using Formazin primary standards. **NOTE:** Reassign new values to the Gelex standards each time the instrument is calibrated with Formazin.

Fluoride Sampling Procedures

Water system personnel must monitor daily fluoride levels in the water distribution system daily (including weekend days). Samples that reflect the actual level of fluoride in the water system should be taken at points throughout the distribution. The sites where samples are taken should be rotated daily.

At least once a month, the public water system must submit a sample of drinking water to the commissioner or to a certified laboratory for fluoride analysis. The plant’s and the state laboratory split sample results and the plant's self monitoring form averages must also correlate.

Sampling Procedure

1. Collect sample at a representative sample point in the distribution system.
2. Remove any screen, hoses and aerators from end of faucet.
3. Run COLD water for 3 to 5 minutes to make sure water has not been sitting for a long time in pipes or tanks and is fresh from the well.
4. Turn water down so it does not splash.
5. Uncap bottle and fill to shoulder with water. Screw the cap on tightly.
6. Fill out the required information on Chain of Custody form. **SIGN THE FORM!** The sample will not be processed unless the form has a signature! Also, it is always a good idea to include your printed name next to your signature. In most cases, signature alone cannot identify an individual.
7. Return bottle with completed paperwork to lab.
8. **SAMPLE MUST ARRIVE AT LAB WITHIN 28 DAYS OF COLLECTION!**
Water Fluoridation Report

Public Water Supply Information

Supply: __ County: __

P.W.S. Number: ___________________________ Water Plant Phone Number: __________________________

Sampling Point: ___________________________

Date Collected: ___________________________

Collected by: ___________________________ Title: ___________________________

Water System Results (PPM):

Check Method: □ Specific Ion Method □ SPADNS

Mail Report to: (address must be legible on all copies of report form for return)

LABORATORY RESULTS

Fluoride Level (PPM): ___________________________

Date Analyzed: ___________________________

Analyst: ___________________________

Comments: ___________________________

☐ Exceeds maximum recommended level of 1.3.
☐ Below minimum recommended level of 0.8.
☐ Satisfactory

Optimum level of fluoridation is 1.0.

West Virginia Department of Health and Human Resources
Office of Laboratory Services – Environmental Chemistry Laboratory – Water Fluoridation Section
4710 Chimney Drive, Suite G, Charleston, WV 25302
Phone: (304) 558-0197 Fax: (304) 558-4143
WATER BACTERIOLOGICAL SAMPLING SUGGESTIONS

General Procedures –

1. Use only sterile bottles furnished by the State or County Health Department. These sample bottles have shelf life of 6 months, after which they must be returned to the Office of Laboratory Services for reprocessing.

2. Do Not Touch the inside of the sample bottle or cap.

3. Do not collect samples from a storage tank, leaky faucet, aerators, or “purifiers”.

4. Allow cold water to run 5 minutes to clean service line before sampling.

5. Do Not Rinse Out The Bottle.

6. Reduce water flow and fill bottle to the shoulder, leaving about 1 inch air space at the top to facilitate mixing. Samples can be rejected at the laboratory for insufficient air space.

7. Replace the sample bottle cap securely.

If tap cleanliness is questionable –

1. Apply a solution of sodium hypochlorite (100 mg NaOCl/L) to faucet before sampling.

2. Let water run an additional 2-3 minutes.

Sampling from a mixing faucet –

1. Remove faucet attachments, such as a screen or splashguard.

2. Run hot water for 2 minutes.

3. Run cold water for 2-3 minutes.

Sampling from a river, stream, lake or reservoir –

1. Hold bottle near its base in the hand and plunging it, neck downward, below the surface.

2. Turn bottle until neck points slightly upward and mouth is directed toward the current. If there is not current, as in the case of a reservoir, create a current artificially by pushing bottle forward horizontally in a direction away from the hand.
DIRECTIONS FOR BACTERIOLOGICAL SAMPLING

Collecting the Sample
1. Use only sterile sample bottle furnished by State or County Health Departments. These sample bottles have 6 month shelf life after which they must be returned to the Office of Laboratory Services for reprocessing.
2. Do not touch the inside of the sample bottle or cap or otherwise contaminate outfit.
3. Do not collect from a storage tank, leaky faucet, aerators, or “purifiers”.
4. Allow water to run 5 minutes to clean service line before sampling.
5. Do not overflow or rinse sample bottle.
6. Fill sample bottle to the shoulder leaving about a 1-inch air space at the top.
7. Replace the sample bottle cap securely.

Completing the Sample History – Report Form
1. Complete all of the following information IN INK – make sure that all copies are legible.
2. Provide the following information:
 a. County of water sample origin.
 b. Public Supply (PWS) ID Number and name of water supply.
 c. Who is to be charged for the sample examination?
 d. Collector’s name, title, certification number, organization, and telephone number.
 e. To whom the final report of examination is to be mailed? (DO NOT WRITE “SAME AS ABOVE” – This information appears in a window envelope.)
3. Complete the following sample collection data:
 a. Sample type – Repeat samples and replacement samples must have the complete lab number of the previous sample that they are a repeat/replacement for. (Repeat samples are for samples that were previously positive, replacements samples are for samples that were previously unsatisfactory, laboratory accident or invalid.
 b. Date and Time of sample collection. COLLECTOR MUST INITIAL THE FORM.
 c. Give a specific description or location of the sampling point.
 d. Is the water supply chlorinated? Chlorine residual.
 e. pH
 f. How the sample is to be transported to the laboratory and the transportation condition.

Mailing – Delivery to Laboratory
Samples must be sent or brought for receipt to the laboratory in time for examination during the following hours (South Charleston Laboratory: 8:00 am to 4:30 pm, Monday thru Friday. Kearneysville Laboratory: 8:00 am to 4:00 pm, Monday thru Wednesday and 8:00 am to 12:00 pm, Thursday) and within 30 hours of collection. Check departure schedule of mail or delivery service from your area and plan for collections to be readied for shipment at that time. Make sure postage is affixed to outer mailer.

ALL FIVE COPIES OF THE COMPLETED HISTORY FORM MUST BE ENCLOSED WITH THE SAMPLE.

SAMPLING CONTAINERS ARE THE PROPERTY OF THE STATE AND THEIR USE IS RESTRICTED ONLY FOR THE COLLECTIONS BY STATE AGENCIES OR THOSE DULY AUTHORIZED BY THE STATE.
Total Nitrates Sampling Procedures

Total Nitrate Sampling Supplies
Before you begin sampling, it is important to have all of your supplies on hand. Here is a list of the suggested supplies you may need:

- Cooler for shipping and storage of your sample while in transit between collection point and lab.
- Bagged ice for your shipping cooler.
- PVC or unsupported Neoprene gloves which are necessary to keep your hands safe from sample container preservative chemicals.
- Safety Goggles which are necessary to keep your hands and eyes safe from sample container preservative chemicals.
- Sample Container
- Lab slips, labels, and markers for sample container identification

Additional Recommended Items
- Paper towels for drying off the outside of your sample container after sampling.
- Plastic storage baggies for ice and sample container
- Sampling Containers
 - Although different sizes and types of sample containers can be used for Nitrate sampling, most laboratories supply 80mL sample bottles with concentrated Sulfuric Acid as a preservative
- As a general rule, proper washing of hands is highly recommended for the sample collector.
- Also, food, drink, and even 2nd hand cigarette smoke should never come into contact with the sample or its containers. These foreign objects have been suspected of causing false results in samples, so be sure to practice good clean sample collection procedures.
- Do not sample with any containers that appear to have been tampered with since this may cause an undesirable sample result.
- The laboratory that supplies the sampling containers may provide instruction with the kit for the type of monitoring being performed. Be sure to refer to those instructions when provided.

Important Safety Precautions
Safety goggles and gloves must be worn. Wash hands before and after sampling.

Sampling Procedures
Sample containers may contain liquid preservatives. Liquid preservatives will cause burns. If it comes into contact with the skin or eyes, flush with liberal amounts of water and seek immediate medical attention.

1. Select a state approved sampling location if any have been designated. If none have been designated, contact your state or tribal drinking water program office. For a surface water system, the plant effluent tap might be an appropriate sampling location. For a well discharging directly into a distribution system (entry point to the distribution system or EPTDS), a tap on the well’s discharge piping after any treatment may be appropriate.
2. If possible, use a non-swivel faucet and remove all attachments, including any aerators, strainers and hoses. It is normally recommended not to take a sample at that location if all attachments cannot be removed because they may alter the sample results.

3. Turn on the water tap and run the water until the temperature has stabilized (use a thermometer if possible). This typically takes 2 to 3 minutes. Then reduce the flow so that the stream is approximately ¼ inch in diameter. Do not change the flow rate until after sampling is completed.

4. While the water is running for those 2-3 minutes, completely fill out the labels and lab slip. Be sure to clearly identify the system information, like the public water system identification number, exact sample location, date and time of collection, and the sampler’s name.

5. If the sample collection point has a specific coded identification, include it on the label and sample submission form. Be sure to attach the label prior to sampling. A wet sample container may not allow the label to properly adhere.

6. Hold bottle at an angle and carefully fill it to its shoulder. Do not touch the interior of the bottle or the underside of the cap. Do not allow the bottle to touch the faucet, or allow water to splash up onto the faucet.

7. The sample container should be tightly capped.

8. Blot the sample container with a paper towel to dry it off.

9. It is recommended that you place the sample in a sealable plastic bag before shipping in a closed chest or box.

10. Since ice is sometimes recommended for use in shipping, it is recommended that it be bagged separately to eliminate any contamination of the sample.

11. Samples must be delivered to the analytical laboratory within 3 days for proper testing.

RECOMMENDED:
Taping of the chest prior to shipping is also recommended since the container could be mistakenly opened during shipment.

Also be sure to tape the sample forms and any other sample documentation either inside or the outside of the lid.

If the laboratory has any additional recommendations or requirements, they should be read and followed closely.

If you have any additional questions, please contact your state or tribal drinking water program office for assistance.

Following the proper drinking water sample collection procedures can lead to peace of mind, knowing that the test results truly represent the quality of water your customers are drinking.
Lead and Copper Sampling Procedures

1. Sample must be first-draw after water has been motionless in the plumbing for a minimum of 6 hours. An exception to the first-draw requirement can be granted to non-transient non-community systems that operate 24 hours per day. They must document that they are 24-hour operations and indicate the approximate length of time the water was motionless before sample was collected.

2. Samples must be from cold, untreated water taps in the kitchen or bathroom of residential buildings. Non-residential building samples must be collected from taps where water is typically drawn for consumption. Taps connected to a softener or other point-of-use-device may not be used.

3. Sample must be acidified immediately after collection. If not, the sample has to stand in the original bottle for 28 hours after acidification.

4. Label bottles and fill out laboratory request forms completely.

5. Be sure to take the required number of samples for your system. Refer to the included, EPA Lead and Copper Rule: A Quick Reference Guide to determine your system’s sampling requirements and the 90th percentile.
Disinfection Byproducts Sampling Procedures

TTHM/HAA5 Sampling Supplies
Before you begin sampling, it is important to have all of your supplies on hand. Here is a list of the suggested supplies you may need:
- Cooler for shipping and storage of your sample while in transit between collection point and lab.
- Bagged ice for your shipping cooler.
- PVC or unsupported Neoprene gloves which are necessary to keep your hands safe from sample container preservative chemicals.
- Safety goggles which are necessary to keep your hands and eyes safe from sample container preservative chemicals.
- Sample container.
- Lab slips, labels, and markers for sample container identification.

Additional Recommended Items are:
- Paper towels for drying off the outside of your sample container after sampling.
- Plastic storage baggies for ice and sample container.
- For this sampling method, the laboratory normally sends either 2, 40 or 2, 60 milliliter glass vial containers. Some labs may provide ampules with acid for pH adjustment which is not covered in this presentation.
- Obtain specific instructions from the laboratory at the time empty containers are received.

As a general rule, proper washing of hands is highly recommended for the sample collector.

Also, food, drink, and even 2nd hand cigarette smoke should never come into contact with the sample or its containers. These foreign objects have been suspected of causing false results in samples, so be sure to practice good clean sample collection procedures.

Do not sample with any containers that appear to have been tampered with since this may cause an undesirable sample result.

Procedures
The laboratory that supplies the sampling containers may provide instruction with the kit for the type of monitoring being performed. Be sure to refer to those instructions when provided.

IMPORTANT: The laboratory supplying the sample containers may send trip blanks, sometimes called field reagent blanks, along with the sample containers. Trip blanks consist of sample containers filled at the laboratory, that must remain sealed and must be shipped back to the lab. This is done to check if samples were contaminated during shipment.

Important Safety Precautions
Safety goggles and gloves must be worn. Wash hands before and after sampling.

Caution-Hazard
Sample containers may contain liquid preservatives. Liquid preservatives will cause burns. If it comes into contact with the skin or eyes, flush with liberal amounts of water and seek immediate medical attention.

Sampling Procedure

1. Select a state approved sampling location. Normally, this type of sample is collected at various locations throughout the distribution system.

2. If possible, use a non-swivel faucet and remove all attachments, including any aerators, strainers and hoses. It is normally recommended not to take a sample at that location if all attachments cannot be removed because they may alter the sample results.

3. Turn on the water tap and run the water until the temperature has stabilized (use a thermometer if possible). This typically takes 2 to 3 minutes. Then reduce the flow so that the stream is approximately ¼ inch in diameter. Do not change the flow rate until after sampling is completed.

4. While the water is running for those 2-3 minutes, completely fill out the labels and lab slip. Be sure to clearly identify the system information, like the public water system identification number, exact sample location, date and time of collection, and the sampler’s name.

5. If the sample collection point has a specific coded identification, include it on the label and sample submission form. Be sure to attach the label prior to sampling. A wet sample container may not allow the label to properly adhere.

6. Remove the cap from the vial, keeping the vial upright to prevent spilling any preservatives. Do not put the cap face down or put it in your pocket. Do not allow the inside of the cap or the bottle threads to be touched by any object.

7. Hold the vial at an angle pointing away from your face and carefully fill it until it is completely full. Be careful not to rinse out the preservatives. If acid has been added to the vial by the laboratory, it will mix rapidly with the water and may splatter a bit.

8. Carefully complete filling the vial by putting water inside the cap and transferring it one drop at a time to the vial until completely full.

9. Screw the cap on the bottle being sure not to overtighten the cap.

10. Invert the bottle 2 or 3 times and check for air bubbles. If any are present, add additional water- just a drop or 2- seal and check again.

11. Remember that each “sample” consists of 2 to 3 filled vials. Repeat the previous steps to fill additional vials for each sample.

12. Complete all necessary forms supplied by the laboratory with the appropriate information. In many states, the same form that is filled out here will be used to report the analytical results. Also, you may need to complete a chain of custody form, if required.
13. Place the samples in a cooler. The trip blanks should still be in the cooler. Keep the samples at 2 degrees to 6 degrees C (36 degrees to 43 degrees Fahrenheit) and keep them away from direct light or gasoline and solvent vapors. Pack the samples in a cooler with Ice. As a tip, it might be a good idea to bag up the sample and the ice separately in the cooler. This will help prevent leakage or contamination of the sample from the ice.

14. Deliver the samples to the laboratory or ship the samples by an overnight courier. This will ensure prompt testing for the most accurate results. It is recommended that all samples be received by the laboratory within 7 days.

15. If the laboratory has any additional recommendations or requirements, they should be read and followed closely.

If you have any additional questions, please contact OEHS at 304-558-2981 for assistance.

Following the proper drinking water sample collection procedures can lead to peace of mind, knowing that the test results truly represent the quality of water your customers are drinking.
Sample Containers, Preservation and Holding Times for Regulated Parameters

<table>
<thead>
<tr>
<th>Parameter/Method</th>
<th>Preservative</th>
<th>Sample Holding Time</th>
<th>Extract Holding Time and Storage Conditions</th>
<th>Suggested Sample Size</th>
<th>Type of Container</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metals (except Hg)</td>
<td>HNO₃ pH<2</td>
<td>6 months</td>
<td></td>
<td>1 L</td>
<td>Plastic or Glass</td>
</tr>
<tr>
<td>Mercury</td>
<td>HNO₃ pH<2</td>
<td>28 days</td>
<td></td>
<td>100 mL</td>
<td>Plastic or Glass</td>
</tr>
<tr>
<td>Alkalinity</td>
<td>Cool, 4C</td>
<td>14 days</td>
<td></td>
<td>100 mL</td>
<td>Plastic or Glass</td>
</tr>
<tr>
<td>Asbestos</td>
<td>Cool, 4C</td>
<td>48 hours</td>
<td></td>
<td>1 L</td>
<td>Plastic or Glass</td>
</tr>
<tr>
<td>Chloride</td>
<td>none</td>
<td>28 days</td>
<td></td>
<td>100 mL</td>
<td>Plastic or Glass</td>
</tr>
<tr>
<td>Residual Disinfectant</td>
<td>none</td>
<td>immediately</td>
<td></td>
<td>200 mL</td>
<td>Plastic or Glass</td>
</tr>
<tr>
<td>Color</td>
<td>Cool, 4C</td>
<td>48 hours</td>
<td></td>
<td>100 mL</td>
<td>Plastic or Glass</td>
</tr>
<tr>
<td>Conductivity</td>
<td>Cool, 4C</td>
<td>28 days</td>
<td></td>
<td>100 mL</td>
<td>Plastic or Glass</td>
</tr>
<tr>
<td>Cyanide</td>
<td>Cool, 4C, Ascorbic acid (if chlorinated), NaOH pH>12</td>
<td>14 days</td>
<td></td>
<td>1 L</td>
<td>Plastic or Glass</td>
</tr>
<tr>
<td>Fluoride</td>
<td>none</td>
<td>1 month</td>
<td></td>
<td>100 mL</td>
<td>Plastic or Glass</td>
</tr>
<tr>
<td>Foaming Agents</td>
<td>Cool, 4C</td>
<td>48 hours</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrate (chlorinated)</td>
<td>Cool, 4C, non-acidified</td>
<td>14 days</td>
<td></td>
<td>100 mL</td>
<td>Plastic or Glass</td>
</tr>
<tr>
<td>Nitrate (non chlorinated)</td>
<td>Cool, 4C, non-acidified</td>
<td>48 hours</td>
<td></td>
<td>100 mL</td>
<td>Plastic or Glass</td>
</tr>
<tr>
<td>Nitrite</td>
<td>Cool, 4C</td>
<td>48 hours</td>
<td></td>
<td>100 mL</td>
<td>Plastic or Glass</td>
</tr>
<tr>
<td>Nitrate+ Nitrite</td>
<td>H₂SO₄ pH<2</td>
<td>28 days</td>
<td></td>
<td>100 mL</td>
<td>Plastic or Glass</td>
</tr>
<tr>
<td>Odor</td>
<td>Cool, 4C</td>
<td>24 hours</td>
<td></td>
<td>200 mL</td>
<td>Glass</td>
</tr>
<tr>
<td>pH</td>
<td>none</td>
<td>immediately</td>
<td></td>
<td>25 mL</td>
<td>Plastic or Glass</td>
</tr>
<tr>
<td>o-Phosphate</td>
<td>Cool, 4C</td>
<td>48 hours</td>
<td></td>
<td>100 mL</td>
<td>Plastic or Glass</td>
</tr>
<tr>
<td>Parameter/Method</td>
<td>Preservative</td>
<td>Sample Holding Time</td>
<td>Extract Holding Time and Storage Conditions</td>
<td>Suggested Sample Size</td>
<td>Type of Container</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------</td>
<td>---------------------</td>
<td>---</td>
<td>-----------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Silica</td>
<td>Cool, 4C</td>
<td>28 days</td>
<td></td>
<td>100 mL</td>
<td>Plastic</td>
</tr>
<tr>
<td>Solids (TDS)</td>
<td>Cool, 4C</td>
<td>7 days</td>
<td></td>
<td>100 mL</td>
<td>Plastic or Glass</td>
</tr>
<tr>
<td>Sulfate</td>
<td>Cool, 4C</td>
<td>28 days</td>
<td></td>
<td>100 mL</td>
<td>Plastic or Glass</td>
</tr>
<tr>
<td>Temperature</td>
<td>none</td>
<td>immediately</td>
<td></td>
<td>1 L</td>
<td>Plastic or Glass</td>
</tr>
<tr>
<td>Turbidity</td>
<td>Cool, 4C</td>
<td>48 hours</td>
<td></td>
<td>100 mL</td>
<td>Plastic or Glass</td>
</tr>
<tr>
<td>502.2</td>
<td>Sodium Thiosulfate or Ascorbic Acid, 4C, HCl pH=2</td>
<td>14 days</td>
<td></td>
<td>40-120 mL</td>
<td>Glass with PTFE Lined Septum</td>
</tr>
<tr>
<td>504.1</td>
<td>Sodium Thiosulfate Cool, 4C,</td>
<td>14 days</td>
<td>4C, 24 hours</td>
<td>40 mL</td>
<td>Glass with PTFE Lined Septum</td>
</tr>
<tr>
<td>505</td>
<td>Sodium Thiosulfate Cool, 4C</td>
<td>14 days (7 days for Heptachlor)</td>
<td>4C, 24 hours</td>
<td>40 mL</td>
<td>Glass with PTFE Lined Septum</td>
</tr>
<tr>
<td>506</td>
<td>Sodium Thiosulfate Cool, 4C, Dark</td>
<td>14 days</td>
<td>4C, dark 14 days</td>
<td>1 L</td>
<td>Amber Glass with PTFE Lined Cap</td>
</tr>
<tr>
<td>507</td>
<td>Sodium Thiosulfate Cool, 4C, Dark</td>
<td>14 days(see method for exceptions)</td>
<td>4C, dark 14 days</td>
<td>1 L</td>
<td>Amber Glass with PTFE Lined Cap</td>
</tr>
<tr>
<td>508</td>
<td>Sodium Thiosulfate Cool, 4C, Dark</td>
<td>7 days (see method for exceptions)</td>
<td>4C, dark 14 days</td>
<td>1 L</td>
<td>Glass with PTFE Lined Cap</td>
</tr>
<tr>
<td>508A</td>
<td>Cool, 4C</td>
<td>14 days</td>
<td>30 days</td>
<td>1 L</td>
<td>Amber Glass with PTFE Lined Cap</td>
</tr>
<tr>
<td>508.1</td>
<td>Sodium Sulfite HCl pH=2 Cool, 4C</td>
<td>14 days (see method for exceptions)</td>
<td>30 days</td>
<td>1 L</td>
<td>Glass with PTFE Lined Cap</td>
</tr>
<tr>
<td>515.1</td>
<td>Sodium Thiosulfate Cool, 4C, Dark</td>
<td>14 days</td>
<td>4C, dark 28 days</td>
<td>1 L</td>
<td>Amber Glass with PTFE Lined Cap</td>
</tr>
<tr>
<td>Parameter/ Method</td>
<td>Preservative</td>
<td>Sample Holding Time</td>
<td>Extract Holding Time and Storage Conditions</td>
<td>Suggested Sample Size</td>
<td>Type of Container</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>---------------------</td>
<td>---</td>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>515.2</td>
<td>Sodium Thiosulfate or Sodium Sulfite HCl pH<2 Cool, 4C, Dark</td>
<td>14 days</td>
<td>≤4°C, dark 14 days</td>
<td>1 L</td>
<td>Amber Glass with PTFE Lined Cap</td>
</tr>
<tr>
<td>515.3</td>
<td>Sodium Thiosulfate Cool, 4C, Dark</td>
<td>14 days</td>
<td>≤4°C, dark 14 days</td>
<td>50 mL</td>
<td>Amber Glass with PTFE Lined Cap</td>
</tr>
<tr>
<td>515.4</td>
<td>Sodium Sulfite, dark, cool ≤10°C for first 48 hr., ≤6°C thereafter</td>
<td>14 days</td>
<td>≤0°C 21 days</td>
<td>40 mL</td>
<td>Amber glass with PTFE lined septum</td>
</tr>
<tr>
<td>524.2</td>
<td>Ascorbic Acid or Sodium Thiosulfate HCl pH<2, Cool 4C</td>
<td>14 days</td>
<td></td>
<td>40-120 mL</td>
<td>Glass with PTFE Lined Septum</td>
</tr>
<tr>
<td>525.2</td>
<td>Sodium Sulfite, Dark, Cool, 4C, HCl pH<2</td>
<td>14 days (see method for exceptions)</td>
<td>≤4°C 30 days</td>
<td>1 L</td>
<td>Amber Glass with PTFE Lined Cap</td>
</tr>
<tr>
<td>531.1, 6610</td>
<td>Sodium Thiosulfate, Monochloroacetic acid, pH<3, Cool 4C</td>
<td>Cool 4°C 28 days</td>
<td></td>
<td>60 mL</td>
<td>Glass with PTFE Lined Septum</td>
</tr>
<tr>
<td>531.2</td>
<td>Sodium Thiosulfate, Potassium Dihydrogen Citrate buffer to pH 4, dark, ≤10°C for first 48 hr., ≤6°C thereafter</td>
<td>28 days</td>
<td></td>
<td>40 mL</td>
<td>Glass with PTFE Lined Septum</td>
</tr>
<tr>
<td>547</td>
<td>Sodium Thiosulfate Cool, 4C</td>
<td>14 days (18 mo. frozen)</td>
<td></td>
<td>60 mL</td>
<td>Glass with PTFE Lined Septum</td>
</tr>
<tr>
<td>Parameter/Method</td>
<td>Preservative</td>
<td>Sample Holding Time</td>
<td>Extract Holding Time and Storage Conditions</td>
<td>Suggested Sample Size</td>
<td>Type of Container</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>---</td>
<td>-----------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>548.1</td>
<td>Sodium Thiosulfate (HCl pH 1.5-2 if high biological activity) Cool, 4C, Dark</td>
<td>7 days</td>
<td>≤4C 14 days</td>
<td>≥ 250 mL</td>
<td>Amber Glass with PTFE Lined Septum</td>
</tr>
<tr>
<td>549.2</td>
<td>Sodium Thiosulfate, (H₂SO₄ pH<2 if biologically active) Cool, 4C, Dark</td>
<td>7 days</td>
<td>21 days</td>
<td>≥ 250mL</td>
<td>High Density Amber Plastic or Silanized Amber Glass</td>
</tr>
<tr>
<td>550, 550.1</td>
<td>Sodium Thiosulfate Cool, 4C, HCl pH<2</td>
<td>7 days</td>
<td>4C, Dark 550, 30 days 550.1, 40 days</td>
<td>1 L</td>
<td>Amber Glass with PTFE Lined Cap</td>
</tr>
<tr>
<td>551.1</td>
<td>Sodium Sulfite, Ammonium Chloride, pH 4.5-5.0 with phosphate buffer Cool, 4C</td>
<td>14 days</td>
<td></td>
<td>≥ 40 mL</td>
<td>Glass with PTFE Lined Septum</td>
</tr>
<tr>
<td>552.1</td>
<td>Ammonium chloride Cool, 4C, Dark</td>
<td>28 days</td>
<td>≤4C, dark 48 hours</td>
<td>250 mL</td>
<td>Amber Glass with PTFE Lined Cap</td>
</tr>
<tr>
<td>552.2</td>
<td>Ammonium chloride Cool, 4C, Dark</td>
<td>14 days</td>
<td>≤4C, dark 7 days ≤10C 14 days</td>
<td>50mL</td>
<td>Amber Glass with PTFE Lined Cap</td>
</tr>
<tr>
<td>555</td>
<td>Sodium Sulfite HCl, pH<2 Dark, Cool 4C</td>
<td>14 days</td>
<td></td>
<td>≥ 100 mL</td>
<td>Glass with PTFE Lined cap</td>
</tr>
<tr>
<td>1613</td>
<td>Sodium Thiosulfate Cool, 0-4C, Dark</td>
<td>Recommend 40 days</td>
<td></td>
<td>1 L</td>
<td>Amber Glass with PTFE Lined Cap</td>
</tr>
</tbody>
</table>

TYPICAL CHEMICAL ANALYSIS LABORATORY REPORT

Most laboratories are providing a key on their forms to help explain what various abbreviations and acronyms stand for, but if an owner/operator does not understand what something on the report form means, they will not be able to respond appropriately to questions regarding the analyses. **If you do not understand what something on the report means or the significance of it, ask the laboratory to explain it to you. You are paying for this service; it is your report.** An explanation of the important items is listed below:

1. The time between sampling and analysis can be critical to the validity of the test. This data should be checked for accuracy, especially if the sample is rejected due to holding time problems related to sample preservation.
2. Flag Definitions: This section is provided as a courtesy by the laboratory. It defines the abbreviations and acronyms that appear on the form.
3. Your name, address, etc. **Double check the PWSID # to make sure the sample “belongs to you”.** It is also a good idea to give each sample a “client sample ID” that is unique to your system to ensure that the results are definitely for your sample and **there was no mix up at the laboratory.** The labs handle hundreds of samples each day and also run samples in groups. They are very careful about tracking samples and maintaining sample integrity, but you should always check this information to make sure sample identification is consistent with your records and PWSID.
4. Parameter: This is the chemical that was analyzed.
5. Result: The result is the concentration that was detected. Note that several do not have a numerical value listed. Instead <MDL is listed this means that for that particular parameter less than the Method Detection Limit was present.
6. Units: Note that the units are all mg/L for this particular analysis.
7. **MDL = Method Detection Limit.** This refers to the test method. All methods have a limit below which the actual concentration cannot be accurately determined. The number in this column lists the detection limit for each parameter using that particular method.
8. **MCL = Maximum Contaminant Level.** This column lists the MCL that is listed in the West Virginia State Drinking Water Regulations. If the number in the Result column exceeds the number in the MCL column, your sample has exceeded the concentration allowed under the regulations for that parameter.
9. Prep Method and Prep Date: If a sample required special preparation before analysis it would be described here.
10. Analysis Method: This column lists the analytical method used. This is important from a regulatory standpoint, because specific methods are called out in the Drinking Water Regulations. If the method used is not an approved method, the sample results will not be valid for compliance purposes. The laboratories in West Virginia are very good about making sure the correct method is used if the sample is to be used for compliance purposes.
11. Analysis Date: This is the day the sample was analyzed.
RECORDKEEPING for COMPLIANCE SAMPLING

With a full set of SDWA regulations, the responsibility of keeping a PWS in compliance can seem overwhelming. The most important responsibilities are collecting water samples on schedule, keeping all of the laboratory test results in an orderly filing system, and submitting the proper paperwork. Organization is the key factor.

Here are a few suggestions to help. First, find an extra calendar, or generate a calendar on your computer. Put it up on a bulletin board or just on the wall, somewhere where it will be seen every day. Then go through the whole year and mark down the dates when required sampling needs to be completed. Sampling requirements are different for ground water, surface water and purchaser systems, and for community versus non-transient non-community systems. So look for the sampling guideline that your system receives each year in January or February from the Environmental Engineering Division (EED), central office. For a typical community surface water system you should now be collecting the following:

- Monthly total coliforms: don’t forget to follow your sample site plan.
- Lead and Copper: usually one round every three years, between June 1 and September 30.
- Nitrates: be sure to collect the sample in the required calendar quarter.
- Inorganics: any time during the calendar year.
- Regulated VOCs: any time during the year.
- Regulated SOCs: usually only once every three years, but check your individual guidance printout from the EED.
- Disinfection By-Products: depending on your system’s population, you may be collecting a quarterly sample or just one sample during the month of August. Be sure to collect the sample from the maximum residence time (MRT) location. You must have the sample analyzed for both TTHMs and HAA5s. Large systems must collect four samples every quarter.
- Raw and Treated Water TOCs: These must be sampled monthly, and reported quarterly on EW-90C.
- Don’t forget to submit your Consumer Confidence Report before July 1 each year, and the certification form to confirm that you have distributed it to all of your customers as required, based on your system’s population.
- Don’t forget to send your monthly operational report in by the 10th of each month, including EW-90 (3 pages), EW-90A (2 pages), EW-90B (1 page), EW-90C (quarterly, 1 page), EW-80 if you fluoridate, EW-103 (2 pages) and EW-210 (2 pages).

Be sure to send the lab results to the EED, central office, as soon as they are received from the lab, and keep a record of when they were sent. Keep each of the above referenced test results and reports in a separate manila folder, and keep all of the test results and reports for a given year in a common hanging file. The file will then be readily available when someone from the EED asks to look at them, and there will not be any more of those aggravating violation notices. A little bit of organization will also go a long way in assuring customers of the dedication and professionalism of the PWS and that they are being provided a safe, high quality drinking water.
COMPUTERS

A good basic **personal computer (PC)** for everyday office use can be purchased with a complete office software bundle and that includes a monitor and a printer and sometimes a scanner or a digital camera. A PC can be a tremendous management tool. The time savings, the many reporting capabilities, and the convenience of email, and the ability to download vital information from the worldwide web can enhance the effectiveness of any operation. Maintenance records and process control data can all appear with a click of a mouse. There is a veritable ton of information one can find about water treatment on the Internet. Another benefit of using a PC is recordkeeping. Imagine that the OEHS District Engineer visits the treatment plant to conduct a sanitary survey and asks to take a look at operational data. No problem, one click on a directory with this information will display everything in full detail. The need to frantically fumble through file cabinets and desk drawers will have been eliminated. With a spreadsheet program, an operator can easily graph data instead of pouring over a large spreadsheet with many numbers.

Components

The three main type’s processors readily available include: the Athlon AMD, Pentium IV, and the Celeron. Intel manufactures both the Celeron and the Pentium IV. The Celeron is the least expensive but works quite well for most business applications. The Pentium IV is more expensive and better suited for graphic intensive applications such as video and mapping.

This **random access memory (RAM)** enables a PC to multi-task. More memory is equal to a more powerful PC. For everyday work, word processing, spreadsheets and e-mail, a PC with at least 512MB should be sufficient. Anything less will slow your work.

The hard drive is another critical component to consider before purchasing. Most drives now are being manufactured in excess of 80 GB and function at a speed of 7,200 rpm. This should be more than adequate hard drive space for most small offices.

A CD-RW or Recordable DVD Drive is standard on new PCs. A recordable DVD or CD-RW drive is essential for data storage and transfer. Both allows the back up of important documents (700MB on a CD, 4.7GB on a DVD), share files, and create custom audio or video CDs or DVDs. If you need to back up massive amounts of data or entire hard drives, choose the DVD option.

Many PCs now offer a pair of **Universal Serial Bus (USB)** ports. Be sure to purchase a machine those features USB 2.0 ports. This is high speed USB and many external devices such as mice, keyboards, scanners, digital cameras, printers, and flash drives require newer 2.0 interface to transmit data and function properly. USB’s are also essential for information stored on the 1.44MB floppy disk drive, now that most PC manufacturers do not include floppy drives on new PCs.

Finally, look at the warranty. This is very important because most problems do not usually happen right away. Most PCs come with a 1-year warranty, which is adequate in most cases, but considering some of the environments where PCs are located in a water plant, a 2 or 3-year warranty is a better option to protect your investment. When problems arise and they do, it can be very costly depending on the situation.
Also look for technical support. This can range between 1-year and lifetime support. Also look for 24 hour toll-free support because it will seem when you are having problems, everyone in the western hemisphere is also experiencing problems, so be prepared to spend some time on hold.

Software
Computer software, sometimes called programs, provides instruction that tell the computer how to operate. There are 2 main types of software. System software directs all the activities and sets all the rules for how the hardware and software work together. Application software is used to accomplish a specific task. Carefully examine the software bundles that come with your PC. Most PCs come from the factory with office software bundled with computer. The software most often used in the water industry are:

- A word processing program is an extremely useful tool, for typing documents such as memos, letters and letterhead, legal copies, reference documents. Other word processing functions include "spell checking" (actually checks against wordlists), "grammar checking" (checks for what seem to be simple grammar errors), and a "thesaurus" function (finds words with similar or opposite meanings).
- Spreadsheet software performs complicated calculations quickly and efficiently. A spreadsheet program is also useful for maintaining and tabulating process control data and inventory. Many programs have chart and graph capability so you can easily visualize your data.
- A database program is a structured collection of records or data that is stored in a computer system. A database is used for keeping track of mailing lists, phone numbers, inventory, and maintenance items.
- A new document format has entered the internet scene- **Portable Document Format (PDF)**, **Hypertext Markup Language (HTML)** (the code behind Web pages) cannot maintain all the original formatting and presentation of many documents. In such cases, websites use a PDF. PDF documents maintain the look of the original document, and they can be viewed on any Macintosh, PC, or UNIX computer. First, however, download and install the free Adobe Reader program. Please use the most current reader from Adobe to ensure compatibility with all PDF files on EPA's site. The Adobe Reader is also sometimes referred to as the Adobe Acrobat Reader.

Cleaning and Organizing Your Computer
It is a good idea to think of the computer as an office. It stores files, programs and pictures. This can be compared to an actual office’s files and machines. The operating system is the boss. With this in mind, think of an office that was slow and inefficient. There were probably many different reasons for the inefficiency. This is the same with a computer. There can be many items that slow down the computer. Perhaps the one most commonly overlooked is disorganization and clutter.

Disk Cleanup
An office can accumulate a lot of unnecessary files. The same is true for a computer. One of the best ways to keep this clutter under control is to perform a cleaning utility periodically. This cleaning utility will be called a “disk cleanup.” It removes a variety of unnecessary files depending on the selected options. This will include compressing old files, deleting temporary Internet files, emptying the recycle bin, etc.
Performing a disk cleanup is not very time consuming and it may save more time in the end by making the computer run faster. However, a disk cleanup should be run periodically rather than just once in a great while. One way to make this run periodically is to make it a scheduled task. This will allow the computer to run it automatically with the intervals and time of day determined. It can always run it periodically without creating a scheduled task.

Add or Remove Programs
The information given above may help rid the computer of some unnecessary files, but there is also a need to disregard unnecessary programs as well. It is a good idea to browse through the add or remove programs utility every once in a while just to make sure that all programs are of usefulness. If there are programs listed that are no longer used they should be uninstalled. In most cases, to finish uninstalling a program, it is wise to restart the computer.

Defragment
In a computer, the saved files are placed on the hard drive. However, they are placed according to the time that they were saved. So, if a word document is opened and saved as “file A” and then another document is opened and saved as “file B”, “file A” will placed next to “file B.” This is fine, but when “file A” is opened later and saved again, the added information is saved next to “file B.” When files are broken up this way it is referred to as a fragmented file. This means that the computer must find the first part of the file and then find the second part of the file to open that one word document. This can make the computer run slower. Defragmenting the hard drive rearranges files on the hard drive and removes empty spaces so that they can be accessed quicker. It may take a while to finish this task depending on the speed of the computer and the amount of fragmented files. It could take from about 15-30 minutes or more. However, the computer can still use the computer while the disk defragmenter is working.

Computer Backup
All of this leads up to backing up your system. There is no need to backup unnecessary files. That is one reason to do Disk Cleanup. The other is just to eliminate files that are not needed. Computer backup is the storing copies of files on a medium other than the hard disk. The reason for making computer backups is to protect against the event that something happens to damage the files so they are no longer usable. With backups of files, then these files can be restored to the computer.

Computer backups can be made in very different formats. The traditional method of backing up computer files was the floppy disk. However, floppy disks are becoming increasingly obsolete. It is already not uncommon to not even see a new computer that includes a floppy disk drive, and it is becoming almost impossible to actually get a new computer that includes such a drive. Floppy disks can only hold 1.4 megabytes of data, and there are formats which can hold much more.

CD-Rs are CD-ROMs that you can actually write onto, and hold up to 800 megabytes of storage. You can also use CD-RW, which can be written onto more than once, unlike a CD-R. DVD burners are also becoming increasingly common, and a typical DVD-R can hold up to 4,700 megabytes, or 4.7 gigabytes.

Another new technology which is becoming common for computer backup is the key drive, also known as a flash drive, jump drive, or thumb drive. These are removable drives which are very small, the size of a key chain, and many in fact are designed to operate as key chains. They can
hold up to gigabytes worth of data, not as much as a typical DVD-R but still a sizeable amount of data.

The easiest is a one-touch backup. The external backup drive and software are included with this purchase. Once this backup is set up, it really is one touch of the button on the hard drive to do a complete or partial backup of the internal hard drive.

Consult your billing software provided for this information. Backups can be made on hard drives, zip drives, CD-R, or CD-RW drives. An advantage of zip drives or CDs is that the copies can be stored off-site as is recommended.
EFFECTIVE WATER UTILITY MANAGEMENT

Recent events have highlighted the fundamental importance of sustaining our Nation's water infrastructure. Effective utility management is the key to achieving this goal. Effective management can help utilities enhance the stewardship of their infrastructure, improve performance in critical areas, and respond to other challenges. Addressing the Nation's water and wastewater infrastructure also calls for ongoing collaboration between government, industry, elected officials, and other stakeholders.

PWSs face common challenges, such as rising costs and workforce complexities, and need to focus attention on these areas to deliver quality products and services and sustain community support. Within this context, four primary building blocks of effective water utility management have been identified, which could become the basis of a future water utility sector management strategy. These building blocks, described below, are: Attributes of Effectively Managed Water Utilities, Keys to Management Success, Water Utility Measures, and Water Utility Management Resources.

Attributes of Effectively Managed Water Utilities
Ten attributes of effectively managed water sector utilities have been identified that provide a succinct indication of where effectively managed utilities focus and what they strive to achieve. Further, it was recommended that the water utility adopt and utilize these Attributes as a basis for promoting improved management. The attributes can be viewed as a continuum of, or a set of building blocks for, management improvement opportunities. The attributes, are deliberately not listed in a particular order; since the utility manager will determine their relevance and relative importance based on individual circumstances.

- **Product Quality:** Produces potable water, treated effluent, and process residuals in full compliance with regulatory and reliability requirements and consistent with customer, public health, and ecological needs.
- **Customer Satisfaction:** Provides reliable, responsive, and affordable services in line with explicit, customer-accepted service levels. Receives timely customer feedback to maintain responsiveness to customer needs and emergencies.
- **Employee and Leadership Development:** Recruits and retains a workforce that is competent, motivated, adaptive, and safe-working. Establishes a participatory, collaborative organization dedicated to continual learning and improvement. Ensures employee institutional knowledge is retained and improved upon over time. Provides a focus on and emphasizes opportunities for professional and leadership development and strives to create an integrated well-coordinated senior leadership team.
- **Operational Optimization:** Ensures ongoing, timely, cost-effective, reliable, and sustainable performance improvements in all facets of its operations. Minimizes resource use, loss, and impacts from day-to-day operations. Maintains awareness of information and operational technology developments to anticipate and support timely adoption of improvements.
- **Financial Viability:** Understands the full life-cycle cost of the utility and establishes and maintains an effective balance between long-term debt, asset values, operations and maintenance expenditures, and operating revenues. Establishes predictable rates—consistent with community expectations and acceptability—adequate to recover costs, provide for reserves, maintain support from bond rating agencies, and plan and invest for future needs.
• **Operational Resiliency:** Ensures utility leadership and staff work together to anticipate and avoid problems. Proactively identifies, assesses, establishes tolerance levels for, and effectively manages a full range of business risks (including legal, regulatory, financial, environmental, safety, security, and natural disaster related) in a proactive way consistent with industry trends and system reliability goals.

• **Community Sustainability:** Is explicitly cognizant of and attentive to the impacts its decisions have on current and long-term future community and watershed health and welfare. Manages operations, infrastructure, and investments to protect, restore, and enhance the natural environment; efficiently use water and energy resources; promote economic vitality; and engender overall community improvement. Explicitly considers a variety of pollution prevention, watershed, and source water protection approaches as part of an overall strategy to maintain and enhance ecological and community sustainability.

• **Infrastructure Stability:** Understands the condition of and costs associated with critical infrastructure assets. Maintains and enhances the condition of all assets over the long-term at the lowest possible life-cycle cost and acceptable risk consistent with customer, community, and regulator-supported service levels, and consistent with anticipated growth and system reliability goals. Assures asset repair, rehabilitation, and replacement efforts are coordinated within the community to minimize disruptions and other negative consequences.

• **Stakeholder Understanding and Support:** Engenders understanding and support from oversight bodies, community and watershed interests, and regulatory bodies for service levels, rate structures, operating budgets, capital improvement programs, and risk management decisions. Actively involves stakeholders in the decisions that will affect them.

• **Water Resource Adequacy:** Ensures water availability consistent with current and future customer needs through long-term resource supply and demand analysis, conservation, and public education. Explicitly considers its role in water availability and manages operations to provide for long-term aquifer and surface water sustainability and replenishment.

Keys to Management Success

Five “Keys to Management Success” were also identified that foster utility management success.

• **Leadership:** Leadership plays a critical role in effective utility management, particularly in the context of driving and inspiring change within an organization. In this context, the term “leaders” refers both to individuals who champion improvement, and to leadership teams that provide resilient, day-to-day management continuity and direction. Effective leadership ensures the utility’s direction is understood, embraced, and followed on an ongoing basis throughout the management cycle.

• **Strategic Business Planning:** Strategic business planning helps utilities balance and drive integration and cohesion across, the Attributes. It involves taking a long-term view of utility goals and operations and establishing an explicit vision and mission that guide utility objectives, measurement efforts, investments, and operations.

• **Organizational Approaches:** A variety of organizational approaches can be critical to management improvement. These approaches include establishing a “participatory organizational culture” that actively seeks to engage employees in
improvement efforts, deploying an explicit change management process, and utilizing implementation strategies that seek early, step-wise victories to build momentum and motivation.

- Measurement: A focus and emphasis on measurement is the backbone of successful continual improvement management and strategic business planning. Successful measurement efforts tend to be viewed on a continuum, starting with basic internal tracking.

- Continual Improvement Management Framework: A “plan, do, check, act” continual improvement management framework typically includes several components, such as conducting an honest and comprehensive self-assessment; establishing explicit performance objectives and targets; implementing measurement activities; and responding to evaluations through the use of an explicit change management process.

Water Utility Measures
It has been strongly affirmed that measurement is critical to effective utility management. Utility measurement is complicated and needs to be done carefully to be useful. The challenges presented by performance measurement include deciding what to measure, identifying meaningful measures, and making sure that data are collected in a way that allows meaningful comparisons to be made. Consideration of these factors is important if the data are to be used to make real improvements and to communicate accurate information, and help ensure that the information is interpreted correctly.

Within this context, the Committee identified a set of high-level, illustrative example water utility measures related to the Attributes and recommended that, to simply get started on exploring this component of the future sector strategy, these or other example utility measures be made available. These preliminary example measures included, for instance, under Operational Optimization, the amount of distribution system water loss; under Operational Resiliency, whether the utility has a current all-hazards disaster readiness response plan; and, under Stakeholder Understanding and Support, whether the utility consults regularly with stakeholders.

It is recommended that a longer-term initiative to identify a cohesive set of targeted, generally applicable, individual water utility measures. The goal would be to provide robust measures for individual utilities to use in gauging and improving operational and managerial practices and for communicating with external audiences such as boards, rate payers, and community leaders.

Water Utility Management Resources
It is believed that water utilities are interested in tools that can support management progress, and that many utilities would benefit from a “helping hand” that can guide them to useful management resources, particularly in the context of the Attributes.
THE NEED FOR ORGANIZATIONAL STRUCTURE

It doesn’t matter if a PWS is large or small; a clear and well-understood organizational plan is vital to its success and long-term viability. Sound organization promotes effective management by uniting the efforts of the governing board, the manager and the employees into the common purpose of operating a successful utility system that meets customer needs. At first glance, the idea of adopting an organizational chart or a chain of command may seem to relate more to larger systems, but in reality, the smaller the system, the more important organization becomes. That is because in a small organization, each employee represents a larger percentage of the staff. Therefore, it is even more important to avoid the duplication of effort and to eliminate confusion.

Developing and implementing a written organizational plan can help achieve those goals. Creating and maintaining an effective organizational plan requires time and careful study. It would be a good idea to involve decision makers, management, and employee representatives into the task. Input from different perspectives can lead to more well-rounded and thorough plan. Following implementation of such a plan, the governing body and management should understand that continuous development, adjustment, and review needs to take place. As the operation changes, the organizational plan should be revised. Any organizational plan needs to consider the ability, needs, and potential of employees. The following are some points to consider when establishing an organizational plan:

- Organization should be based upon the objectives to be achieved and the activities to be performed,
- Each individual should have one “boss” and all directions and guidance should come from that individual,
- Supervisors, at any level, should have a limited number of people for whom they are directly responsible, and
- The number of distinct levels of management should be kept to a minimum.

Delegation of authority should be an objective. This allows decisions to be made by the people who are the closest to the action for which the decision applies. Responsibilities, limits of authority, and the relationship of each organizational department should be clearly stated in approved job descriptions.

In order for any organizational plan to be successful, it must be relatively simple, flexible, and dynamic. That is, it should be a living document and should be regularly reviewed and amended. Once adopted, copies of the plan should be distributed to everyone involved and that includes distributing copies to all board members, managers, and employees. An organizational plan can be an excellent management tool for ensuring that personnel have a clear understanding of their role in the operations of the utility. This plan should be flexible enough to allow job shadowing and continuous staff development.

These elements are important for promoting morale and staff development and in helping employees feel more as a member of the team. Ensuring harmonious relationships while working toward more efficient job performance should be the goal of any organizational plan. Hopefully, the end results will include improved managerial and technical capacity that in turn will lead to improved financial capacity. Any time the three areas of capacity development can advance together in unison, the utility and its employees, and more importantly, the customers, all come out as winners.
OWNING AND OPERATING A PUBLIC DRINKING WATER SYSTEM

Owning and operating a public drinking water system is a big responsibility. There are few things more important to maintaining good health than having access to safe drinking water. The purpose of this section is to assist owners/operators of small water systems to meet the requirements of state and federal drinking water laws, and ultimately to protect the health of their customers.

Much of this guide will be useful on a day-to-day basis. The guide can be used as a filing system for system personnel and can serve many purposes including providing a:

- central location for numerous water system records and system policies;
- process to evaluate present and future system deficiencies and improvements necessary for continued water system operation; and
- a list of operation and maintenance duties that can be reviewed, used and improved as necessary by existing and future water system personnel so they may effectively manage and operate the water system.

This section contains a description of content of the 18 elements. Some elements can be completed quickly (e.g., fill in information that should be readily available or attach documents you should have in your files). Other elements may take more effort (e.g., if one does not exist, create a service area and facility map or develop a cross connection control program).

Working through this section may appear challenging at first, but from the perspective of assuring effective long term management of the system, each element is important. To help prioritize the efforts, please focus on the first five elements of this section first. These elements primarily focus on accurate record keeping and water quality monitoring/reporting. They are absolutely essential and need immediate attention. Once these are completed, continue to work through the section and develop the other technical, managerial, and financial elements.

- **Water Facilities Inventory**: Provides information about the water system (e.g., source capacity, number of connections and population served, etc.).
- **Water Quality Monitoring Program**: Identifies the type, frequency and location of baseline water quality monitoring required for each existing, permanent and seasonal source and distribution system.
- **Consumer Confidence Report**: Creates an annual educational water quality report, for distribution to your customers, which summarizes monitoring results.
- **Preparing for Your Sanitary Survey**: Identifies things a system can perform to prepare for sanitary surveys.
- **Annual Operating Permit**: Provides a compliance status report to system to correct any identified problems.
- **Cross-Connection Control Program**: Documents cross-connection control program efforts to protect system from possible contamination.
- **Emergency Response Plan**: Contains phone numbers of parties to contact in case of a system emergency.
- **Service Area and Facility Map**: Contains service area boundaries and lists major system components.
• **Operation and Maintenance Program**: Lists system personnel information (name, title, phone #) and identifies functions, frequency (e.g., weekly, monthly), and location of component maintenance.

• **Wellhead Protection Program**: Summarizes the system’s wellhead protection program.

• **Water Right Documentation**: Lists the right (Permit, Certificate, or Claim) that includes the number of acre-feet and gallons per minute allowed to be withdrawn.

• **Record of Source Water Pumped**: Charts the amount of water pumped from system sources.

• **Water Usage**: Charts the number of system users, the average consumption per user, and the estimate of total system usage.

• **Water Conservation Program**: Summarizes the system’s conservation efforts that promote the wise use of water.

• **Component Inventory and Assessment**: Verifies component approval status. Inventories system components. Identifies possible system improvements in the next 6 years.

• **List of System Improvements**: Identifies the year, cost, and financing method for anticipated system improvements.

• **Budget**: Includes revenues, expenses and capital improvement financing.

• **System Management**: Documents the system’s management practices including the decision making process.
FORMAL COMMUNICATION

Is there a formal communication linkage between the water system operator and one or more members of the governing board or board of directors? Formal communication puts in place a process to allow the governing board to be fully informed and in control of the water system decisions. Management capacity is enhanced when formal communication channels are created between governing board members (usually part time officers) and full time professional operations staff. For example, city councils may require their key operations staff to attend their monthly council meetings to report on water system activities, or a council may designate one of its members as the liaison or “point person” for water system issues.

System Policies
Good management will increase the ability of the system to achieve its mission, as well as reduce liability exposure. System policies help create the frames of reference necessary for the professional staff to determine the scope of authority granted by the governing board. Management teams that create written guidance documents also provide a measure of continuity and guidance for water system personnel. Good business practice demands that the policies listed below should be in written form, adopted and periodically reviewed by the water system management team. What is most important is that the written policy exists, that the content is appropriate for the size of the water system, and that the management team is committed to reviewing and updating the policy periodically. The content of the policies is more important than the structure.

The DWSRF loan application requirements identify the following 6 policies as indicators of management capacity. A general description of each type is also offered below.

System Operations Manual or Policy
This policy provides technical guidance on how the water system is operated. This manual or policy is likely to be the most detailed guidance document of the six listed here. Operations policies also include guidance for monitoring and reporting of water samples and testing results.

Board Governance Policy
The board governance policy reflects the protocols for the governing board’s activities. This policy includes qualifications for election of board members, the number of members who may serve and their terms of office, rules regarding the conduct of meetings, etc. Establishing board protocols can improve the efficiency of board meetings and result in effective use of officers’ time.

Personnel Policy
The personnel policy would include guidance regarding hiring, probation, dismissal and disciplinary procedures; provide detail on employee compensation and fringe benefits; establish requirements for conduct and performance; describe job descriptions and expectations, and explain procedures for employee evaluation.

Safety and/or Risk Management Policy
Accidents, experienced by both the water system staff and the customers they serve, can cause significant disruptions of water service as well as create unexpected financial liabilities. A safety and risk management policy attempts to confine the scope of authority of employees and managers in order to reduce the risk of such negative financial exposure. A water system’s
insurance provider can offer assistance in establishing risk management guidelines to limit liability.

Operating Emergency Plan
Every public water system needs to know how it will react to natural disasters and other emergencies. Specifically, the water system management team needs to know what steps are to be taken and what actions are to be accomplished given a variety of threats to service delivery. Since the events of September 11, 2001, threat readiness and response is absolutely necessary to commit to written policy, especially in the face of terrorist threat to essential facilities such as public drinking water systems.

Customer Service Policy
A water system is in the business of providing service—safe drinking water—to its customers. A customer service policy strengthens the relationship between the water system and its customers because it clarifies how the water system will relate to those it serves. This policy should include public information guidance, complaint resolution procedures, problem response requirements, billing and other notification rules, and other actions the system can take to assure the customers that the water system is being run in the most professional manner possible.

Organizations exist to help provide guidance on the content of each of these policy documents. Water systems with limited staff capacity to create these policies can utilize and modify model policies in each category. Organizations such as the Rural Community Assistance Corporation, the West Virginia Rural Water Association and the American Water Works Association have excellent model policies. In addition, similar sized water systems may be good sources of sample policies.

Professional Support Regarding Engineering & Legal Services
Water system capacity in the areas of engineering and legal services (as well as other professional services such as accounting and auditing) is increasing essential to successful service delivery over time. While water systems can assure such capacity by hiring these professionals, most small systems can gain these capacities by retaining engineering and legal services by contract, or by hiring these professional services as necessary.

Legal and engineering services are specifically identified for capacity assessment purposes by the state of West Virginia. Each profession provides to the water system the capacity to keep pace with regulatory requirements and to advise response to changes in these regulatory requirements.

Record Keeping
A final indicator of management capacity used by the State of West Virginia is record keeping. Well-managed water systems are expected to have record keeping systems that can easily yield important records for review by the operations staff, the governing board members, customers (where appropriate), and regulatory agency staff of the OEHS and EPA. Record keeping systems create and preserve an important record of the water system’s status and activities. For the purposes of **Drinking Water State Revolving Fund (DWSRF)** loan applications, an evaluation of the condition and content of the record keeping system is made by OEHS.

For a water system seeking to demonstrate management capacity relative to record keeping, the following questions should be answered affirmatively:
- Does this water system have current “as built” engineering drawings of the system facilities?
- Does this water system effectively maintain system operating records for operator, board member, customer, EPA and OEHS reference?
- Does this water system effectively maintain records of correspondence with the appropriate agencies?
- Does this water system effectively maintain records of correspondence with the EPA?
- Does this water system effectively maintain records of the results from required water testing as well as CCRs?
COMPLIANCE MONITORING

Every water system has its own compliance monitoring schedule provided by OEHS by February each year. A general monitoring schedule is provided below. Each public water system is strongly encouraged to contact the OEHS to obtain the most up-to-date version of the chart for their system. It will indicate the most recent monitoring results on record, and subsequent samples that must be collected.

Monitoring Schedule

<table>
<thead>
<tr>
<th>TESTING/PARAMETER</th>
<th>HOW OFTEN/HOW MANY/WHERE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACTERIOLOGICAL</td>
<td>monthly/based on population served/distribution system</td>
</tr>
<tr>
<td>FREE CHLORINE RESIDUAL</td>
<td>every 4 hours/based on population served/point of entry</td>
</tr>
<tr>
<td>TOTAL CHLORINE RESIDUAL</td>
<td>daily/one/distribution system*</td>
</tr>
<tr>
<td>TURBIDITY</td>
<td>Every 4 hours/one/point of entry</td>
</tr>
<tr>
<td>NITRATES</td>
<td>annually/one/point of entry</td>
</tr>
<tr>
<td>NITRITES</td>
<td>annually/one/point of entry**</td>
</tr>
<tr>
<td>MORS</td>
<td>monthly/not applicable/send to OEHS</td>
</tr>
<tr>
<td>CROSS-CONNECTION DEVICES</td>
<td>annually/not applicable/distribution system</td>
</tr>
<tr>
<td>FLUORIDE</td>
<td>daily/one/distribution system***</td>
</tr>
<tr>
<td>LEAD & COPPER</td>
<td>every 3 years/based on population served/distribution</td>
</tr>
<tr>
<td>THM&HAA5</td>
<td>quarterly/based on population/distribution</td>
</tr>
<tr>
<td>TOC</td>
<td>monthly/two/one at raw and one at point of entry</td>
</tr>
<tr>
<td>IOC</td>
<td>annually/one/point of entry</td>
</tr>
<tr>
<td>VOC</td>
<td>annually/one/point of entry</td>
</tr>
<tr>
<td>SOC</td>
<td>Every 3 years/one/point of entry</td>
</tr>
<tr>
<td>RADIONUCLIDES</td>
<td>varies/one/point of entry</td>
</tr>
</tbody>
</table>

*Total chlorine residuals must be analyzed and recorded with bacteriological samples.
**If 1st sample is less than 1 mg/L, no further samples are required.
***Once a month a sample must be submitted to a certified laboratory.
MONTHLY OPERATIONAL REPORTS

The Compliance and Enforcement (C&E) Program of OEHS has noted that many PWSs have not been completing the monthly operational reports (MOR’s) correctly, which will result in a violation being issued. Under the West Virginia Public Water Systems Regulations (64CSR3), monthly records are required to be submitted. The specific language of concern to operators is in § 64-3-12, Public Water System Reporting Requirements:

§ 64-3-12.5. A public water system shall submit a written summary of the public water system operation, test data, and other information as may be required by the commissioner to the commissioner at least once per month. The commissioner may require more frequent reports in cases where there are public health concerns.

§ 64-3-12.6 All reports and summaries required by this rule or federal regulations adopted in this rule shall be submitted in a manner or form approved by the commissioner.

A review of the MOR’s have been conducted over the past several months and letters have been mailed with items of concern noted to systems, which has had some positive effects, but there is still a high number of problems. The two major problems associated with the MOR’s were inadequate treatment and/or unqualified operators, both having a high potential for adverse public health effects. When a PWS is accused of providing unsafe water, OEHS’s position will be detrimental to the PWS if the monthly operational reports indicate that the water was not treated properly, or if an uncertified operator signed the report.

A plan has been devised to address this problem, each month, a number of PWS MOR’s will be picked at random from all active systems. These reports will be reviewed in detail, violations issued accordingly, forwarded to the District Offices for one-on-one technical assistance, if appropriate, and forwarded to Certification and Training, if appropriate, for action against the operator. If problems are identified, the system will be tracked until no violations are noted. As systems are noted “in compliance” another system will be picked at random to take the compliant systems’ place, until all MOR’s have been reviewed, and systems are submitting satisfactory MOR’s.

For your information, here is a breakdown of the top ten problems:

1. Inadequate free chlorine residual;
2. Chlorine residual not monitored daily;
3. All sheets required not submitted (EW-90);
4. Inadequate total chlorine residual;
5. Questionable location where a total chlorine residual was obtained;
6. Improper Operator Classification;
7. No location total chlorine;
8. No exp. date and/or classification noted;
9. No free chlorine recorded; and,
10. Expired certification.

A typical ground water system problem is minimum free chlorine residual, after the 30 minute contact time, is tied to the pH of the treated water. If no pH is measured, the minimum required free chlorine residual is 1.0 mg/L. Total chlorine residual is required to be monitored every day.
that water is available to the public. Free chlorine residual is required to be measured every day that water is treated.

A typical surface and ground water under the influence system problem is the EW-90A and/or EW-90B is not completed or not attached.

A minimum total chlorine residual of 0.2 mg/L is required throughout the distribution system. Many systems are reporting 0.0 mg/L or 0.1 mg/L.

The location is being asked to verify that it would represent a good location in the distribution system for District Office personnel, when a site visit is conducted. Most of these problems are where the location appears to be at the plant or entry point (or before), which would not represent the total chlorine residual in the distribution system.

Another typical problem is a Class II water system MOR signed by a Class I or 1D. It is also a problem if no location was indicated on the MOR or if the MOR was signed, but no classification and/or no expiration date was noted. The assumption by C&E will be that the person signing does not hold a current certification. Similarly, if the MOR was signed, but based on the expiration date, the operator’s certificate is not current, it is not considered within compliance.

Free chlorine residual is required to be measured each day that water enters the distribution system.

Other problems:
- no free chlorine residual recorded at all;
- the wrong form was submitted;
- the sampler’s initials were not indicated;
- the MOR was not signed at all;
- no total chlorine residual was recorded at all;
- the chlorine residuals were placed in the amount of chlorine added;
- the chlorine residuals did not have a decimal;
- a rubber stamp for the operator’s signature; and,
- one report with exceptionally high chlorine residuals (over 5.0 mg/L).
MINIMIZING REPORTING VIOLATIONS

According to Federal regulations, water systems are required to submit test results (and reports) to the OEHS no later than ten (10) calendar days from the end of each applicable monitoring period. Here are some ways your system can minimize the chance of receiving a reporting violation.

- Sample early in the monitoring period. This gives your system time to take another sample in the event the lab, post office, or both fail to provide test results in a timely manner.
- Submit your system’s results via Certified Mail. If there are problems with delivery reliability in your area, consider sending us your results via Certified Mail, which provides the sender with a mailing receipt from the US Postal Service.
- Make sure results are mailed to the correct address and be sure the “ATTN” line is addressed to Data Management.
- Always include the following information on each test result (or report sheet):
 - PWSID number;
 - Water system name;
 - Treatment plant name (if you have multiples); and,
 - Sample location name.
- Call Data Management to confirm receipt of test results.
- All test results must be submitted to the OEHS central office in Charleston, WV to receive credit for compliance.
- Make sure your chief operator receives a copy of the current year’s monitoring schedule. Monitoring schedules are mailed in late January each year. Your chief operator is responsible for arranging appropriate and timely testing during the correct compliance period and ensuring results and reports are submitted to the OEHS on time.
SAFE DRINKING WATER INFORMATION SYSTEM

Public drinking water information is stored in the Safe Drinking Water Information System (SDWIS), the EPA's Safe Drinking Water Information System. SDWIS contains information about public water systems and their violations of EPA's drinking water regulations, as reported to EPA by the states. These regulations establish maximum contaminant levels, treatment techniques, and monitoring and reporting requirements to ensure that water systems provide safe water to their customers. This query will help you to find your drinking water supplier and view its violations and enforcement history since 1993.

Information in the SDWIS database can be freely accessed at the following website: www.epa.gov/enviro/html/sdwis/sdwis_query.html through the use of a query. Queries that return a large volume of data may terminate prematurely due to system limitations. A few examples of constraints for a query are: a single session can be 15 minutes in duration; and a session may stay idle for 7.5 minutes, at which time it will be terminated. So it is important to develop queries that return small batches of data and terminate the session as soon as your queries have been executed, so others can access the database.

This query form allows you to retrieve Safe Drinking Water data from the SDWIS database in Envirofacts. This is a brief description to the Safe Drinking Water Query Form. For help understanding and using the data in this system, consult the User's Guide. For national and state-by-state information, please see the drinking water facts and figures page.

How to get information about your public water system?

Step 1: Find your water system

- Select the state where you live.
- At the line that says "Water System Name" select "containing" and then type the name of your water system is (it doesn't need to be the whole name) and press the search button, e.g. “Jonesville”.
- Scan the list of water systems. Do any of these appear to be your system? Look carefully at the Water System Name, Principle County Served, and Population Served to determine if this is your water system.
- If this search also fails, try either a county search (which will show you all the water systems which principally serve a specific county) or a search by system size (where you can locate, for example, all the water systems in your state that serve over 100,000 people).
- If neither of these two searches work, try a water system name search again using less specific words, e.g., “Jones”

Step 2: View your water system

- Once you have located your water system, select it by clicking on the Water System ID number. This will take you to a screen which will list any violations your system has had of EPA safety standards for drinking water.
- If there aren't any violations listed, your water system meets all federal drinking water safety standards, and your water should be considered safe to drink.
Step 3: What if there are violations?
If there are violations, there are several key things you should look at:

- When did the violation occur? (Look at beginning and ending dates of the violation period to give you the time frame the violation occurred in.) Was the violation recent or did violations several years ago and not since then? Is there a pattern of violations?
- What type of violation occurred? Violations will be displayed in two tables. The first table lists "health-based violations." These violations occur when a water systems detects levels of a contaminant exceeding the safety level (called the maximum contaminant level) or when the water system fails to treat the water as required to remove particular contaminants (called a treatment technique violation). Other violations include monitoring and reporting violation (which indicate that the water system failed to complete are required sampling or to do so in a timely manner). Specific definitions for what each violation means are available by clicking on the column Type of Violation.
- What contaminant was the violation for? Click on the contaminant name to see why each is regulated by EPA and what its health effects are at levels above EPA's safety standards.

Notes: For many contaminants, an exceedence of the EPA safety level (MCL) may not by itself be a cause for immediate concern. Many contaminants are only a concern if ingested at levels well in excess of the safety standards over many years.

Monitoring violations do not necessarily indicate that the drinking water is not safe. Monitoring violations can occur for many reasons; the best way to find out why your system has monitoring violations is to call your water system directly.

Step 4: If there were violations, what has been done about it?
This question is answered in the follow-up action section following each violation. Look to see if any actions have been taken. Actions can be taken by either the Federal Government (EPA) or by states. If no action has been taken for a violation, as recorded in SDWIS, one of four things has occurred: an informal action (not federally defined) was taken to correct the problem, a formal action (federally defined) was taken to correct the problem but not reported to EPA, no action was taken to correct the problem, or an action to correct the problem is pending.
If action has been taken and reported, look at:

- What action was taken? (By clicking on the column heading, Action Taken, you can see what each individual action means).
- When was the action taken? (Enforcement Action Date)

Step 5: How can I find out more?
If you are concerned about the violations your system has, there are several things you can do to find out more information.

- Contact your water system to find out the latest testing results and what steps it may be taking to address violations. Look in the mail for a new annual water quality report (sometimes called a consumer confidence report) that your water system is required to prepare if it serves more than 25 people year-round.
- Contact OEHS and ask what the state is doing to address violations.
• Find out more about the Safe Drinking Water Act and EPA's Drinking Water Program by calling the Safe Drinking Water Hotline at 1-800-426-4791 or by looking at the Office of Ground Water and Drinking Water web site.
• Find out how you can get involved in protecting your drinking water.

NOTICE: EPA is aware of inaccuracies and underreporting of some data in the Safe Drinking Water Information System. We are working with the states to improve the quality of the data.

Reference: www.epa.gov/enviro/html/sdwis/
RECORD KEEPING

Importance of Records
Keeping of adequate records of performance is an integral part of good water treatment plant operation. Only by making a clear and concise memorandum of what has happened and what has been accomplished will the experiences be of assistance in meeting future operation situations. Pertinent and complete records are a necessary aid to control procedures. Above all, records should be used as a basis for plant operation and for interpreting the results of water treatment.

Records also provide an excellent check on things done or to be done, especially regarding maintenance problems. Equipment in water treatment plants requires periodic services; some daily, some weekly, and others monthly or yearly. Adequate records show when service was last performed and when the time for service approaches. Thus a schedule can be maintained, with nothing overlooked or forgotten.

Significant details of day-to-day experience provide a running account of plant operation and thus have an important historical value. When accurately kept, records provide an essential basis for the design of future changes or expansions of the treatment facilities for other locations where similar problems may be encountered. In the event of legal questions in connection with water treatment or plant operations, accurate and complete records would be urgently required as evidence of what actually occurred at any given time or over any particular period of time. Thus, records and their proper maintenance are essential in any type of water treatment. However, only those records should be kept which are known to be useful; the temptation to accumulate minutiae of no significant value must be guarded against.

In summary the main functions of records are to:

- Satisfy legal requirements
- Aid the operator in solving treatment problems
- Provide an alert for changing raw water quality
- Show that the final product is acceptable to the consumer
- Show that the final product meet plant performance standards
- Show that the final product complies with the WV Drinking Water Standards
- Determine equipment, plant, and unit process performance
- Aid in answering complaints
- Anticipate routine maintenance
- Provide cost analysis data
- Provide future engineering design data
- Provide the basis for monthly or annual reports

Information To Be Included
The extent to which record keeping should be practiced depends entirely upon their potential use. The type of treatment, the volume of water treated, and the kind and importance of installations auxiliary to the treatment plant will control the amount of necessary record keeping. Some of the basic items of information to be recorded are:

Source Water
- Raw water temperature
- Raw water quality
Air temperature
Rainfall data
Raw water quantity used
Capacity

Treatment
Amount of water treated
Chemical dosages
Total amount of chemical used
Amount of water filtered
Number of filters in service
Number of hours filters are in service
Final loss of head before filter was washed
Amount of wash water used
Length of backwash
Rate of backwash
Daily results of laboratory tests

Pumping Stations
Total amount of water delivered by each pump
Suction and discharge pressure
Number of hours of pump operation
Tank levels

Other
Maintenance schedules
Distribution system pressures
Master and individual meter readings
Valve and hydrant operation and maintenance

In addition to these basic data items, each water supply system should have:

- hydrant and valve maps for the distribution system
- a list of material and equipment suppliers
- a central file of instruction manuals for treatment equipment or processes
- all records required by the PWS Regulations
- a description of the basic functions of automatic control systems
- a safety program
- a cross-connection control plan
- engineering plans and specifications for past construction
- names, addresses, and telephone numbers of nearby operators and personnel of the city council, district, or regional health office
- copies of the watershed rules and the latest watershed inspection report
- the procedure for adjustments necessary in case of a major fire

The above are just a few of the many data items that make up good records. Each water supply system has its own critical areas for which data are necessary.
When laboratory determinations are made, it is essential that not only the final results of each test be recorded, but also that all of the test data, frequently called the working data, such as buret readings and the necessary computations, be noted for future reference. Although such details may seem superfluous, should any question arise as to the accuracy of final data obtained in the laboratory, the notes on technical procedures, if available, will be evidence of the accuracy or inaccuracy of the final result reported. Thus, for his own protection in maintaining the integrity of his work, the analyst in the laboratory should keep complete records in most cases. This means that full records of tests must be maintained in the laboratory, although the separate plant operation records will contain only the final result of such laboratory determinations.

Frequently, state and municipal regulations govern the operation of water treatment installations. These regulations require that certain operating records be maintained and reported to the supervising agency at specified intervals. These records must be kept, but should be in addition to adequate plant operating data and should not be considered a substitute for plant records.
MAINTAINING RECORDS & REPORTS

It is important that water system personnel maintain various reports and records for planning and proper management of the system operation. It is equally important to know the significance of each report and record because the operator is responsible for them. Technical reports and records are generally viewed as those dealing with the physical operation and maintenance of the water system’s facilities. These reports, like financial reports, can be valuable tools for good decision-making and good day-to-day management, and can be used as a gauge to help determine the financial integrity and condition of the system.

Good records also allow operators to react to potential problems and plan for future expansion. Accurate historical data allows Board Members to make more informed decisions regarding projections for system improvements. This data can also be an invaluable asset in helping to recognize areas of preventative action. The following reports or records should be used by systems:

Daily Operating Report
This report lists such things as the amount of water purchased or produced, meter readings, and the amount of chemicals used in the treatment process. The report is completed on a daily basis. It is advisable to maintain these records in the files for ten years.

Water Loss Report
The term “water loss’ is generally defined as the difference between the amount of water produced or purchased and the amount of water sold to the customers (as described above).

Operation and Maintenance Records
It is essential to know when equipment was installed or repaired, the number of hours operated or other maintenance performed. Operation and maintenance records cover all the physical facilities of the water system including storage tanks, meters, pumps, vehicles, fire hydrants, valves, etc. Operation and maintenance manuals should be available for all appurtenances.

Emergency Response
Emergency planning is an important responsibility for governing bodies of water systems. Mayors/Board Members should make sure that the water system has contingency plans to handle emergency situations. Good emergency planning includes guidelines to help the system initiate preventive measures directed toward potential emergencies. Several areas in which Mayors/Board Members should plan for emergency response and prevention include the following:

- Emergency and standby systems including supply options for contamination, main breaks, drought, flood, or other disasters.
- Mayors/Board members should have access to all federal and state disaster emergency service numbers in the event of an emergency.
- Emergency conservation plans.
- Plans for emergency staffing.
TOTAL COLIFORM RULE

The Total Coliform Rule (TCR) is the Federal regulation establishes a maximum contaminant level (MCL) based on the presence or absence of total coliforms and monitoring requirements for coliforms in drinking water. It requires every regulated system to periodically collect samples and analyze them for coliforms. The number of routine samples required each month depends on system size. Samples must be collected according to a written “Sample Site Plan” approved by the OEHS. The TCR applies to all public water systems.

Coliform bacteria and chlorine residual are routine sampling and monitoring requirements for all PWS in WV. The coliform bacteriological sampling is governed by the TCR of the SDWA. The TCR requires all PWSs to monitor their distribution system for coliform bacteria according to the written sample site plan for that system. The sample site plan identifies sampling frequency and locations throughout the distribution system that are selected to be representative of conditions in the entire system. Coliform contamination can occur anywhere in the system, possibly due to problems such as; low pressure conditions, line breaks, or well contamination, and therefore routine monitoring is required. A copy of the sample site plan for the system should be kept on file and accessible to all who are involved in the sampling for the water system.

The number of samples to be collected monthly depends on the size of the system. The TCR specifies the minimum number of coliform samples collected but it may be necessary to take more then the minimum number in order to provide adequate monitoring. This is especially true if the system consists of multiple sources, pressure zones, booster pumps, long transmission lines, or extensive distribution system piping. Since timely detection of coliform contamination is the purpose of the sample site plan, sample sites should be selected to represent the varying conditions that exist in the distribution system. The sample site plan should be updated as changes are made in the water system, especially the distribution system.

The sample site plan must be followed and all operating staff must be clear on how to follow the sampling plan. In order to properly implement the sample site plan, staff must be aware of how often sampling must be done, the proper procedures and sampling containers to be used for collecting the samples, and the proper procedures for identification, storage and transport of the samples to an approved laboratory. In addition, proper procedures must be followed for repeat sampling whenever a routine sample result is positive for total coliform.

Each water system should have specific procedures for TCR sampling to address the issues described. The sample site plan and sampling procedures must be readily available to all operations personnel at the facility. In order to prevent obtaining inaccurate sample results that could cause compliance problems, it is critical that the operator be aware of some key issues relating to the collection and transport of the total coliform samples.
HOW COMPLIANCE IS DETERMINED FOR THE TCR

- Compliance is based on the presence or absence of total coliforms.
- Compliance is determined each calendar month the system serves water to the public (or each calendar month that sampling occurs for systems on reduced monitoring).
- The results of ROUTINE and REPEAT samples are used to calculate compliance.

A Monthly MCL Violation is Triggered if:
- A system collecting fewer than 40 samples per month . . . Has greater than 1 ROUTINE/REPEAT sample per month which is total coliform-positive.
- A system collecting at least 40 samples per month . . . Has greater than 5.0 percent of the ROUTINE/REPEAT samples in a month total coliform-positive.

An Acute MCL Violation is Triggered if:
- Any public water system . . . Has any fecal coliform- or E. coli-positive REPEAT sample or has a fecal coliform- or E. coli-positive ROUTINE sample followed by a total coliform-positive REPEAT sample.

What are the Public Notification and Reporting Requirements?
- For a Monthly MCL Violation . . . The violation must be reported to the state no later than the end of the next business day after the system learns of the violation. The public must be notified within 30 days.
- For an Acute MCL Violation . . . The violation must be reported to the state no later than the end of the next business day after the system learns of the violation. The public must be notified within 12 hours.

TCR Sampling Considerations
- Samples must be collected in sterile containers provided by the approved laboratory that will be doing the coliform analysis.
- All sample containers should be labeled with the date, time, and location of sample collection as well as the sign of the person who collected the sample.
- Use only clean sample taps. If cleanliness is questionable, apply a solution of sodium hypochlorite to the surface the tap before collecting the sample.
- The sample should be taken from a smooth nosed cold water tap if possible.
- Aerators, strainers, and hose attachments should be removed before collecting a sample.
- Samples should not be taken from:
 - Leaky taps that allow water to flow from around the stem and over the outside of the faucet;
 - Swivel faucets;
 - Houses with home treatment units; or
 - Taps with non-removable aerators, strainers, or hose attachments.
- The spout of the sampling tap should face the ground so that water cannot stand in the spout when the tap is shut off.
- Prior to collecting the sample, open the tap fully and flush to clear the service line.
- Ensure that there is a total chlorine residual before collecting the sample.
- Reduce the flow enough to prevent splashing, open and fill the sample container without rinsing, leaving a 1 inch space in the container.
- Do not rinse out the bottle, while collecting a bacteriological sample. The bottle contains sodium thiosulfate, which is a preservative used to neutralize the chlorine present in the sample.
- If sample will be in transport to the laboratory for more than 1 hour, use an iced cooler to maintain sample temperature of 4°C. Do not submerse the tops of the sample containers.
- Samples can be held for up to 30 hours before analysis if kept refrigerated.
- It may be necessary to mail the sample to a lab if the PWS is in a remote location. Insulation and mailing is acceptable as long as the time from collection to analysis is less that 30 hours and a chain of custody is maintained.

All of the information described above, relating to the TCR requirements, is readily available from local, state, and federal regulatory agencies. Include your state’s monitoring requirements and policies on file with your sample site plan. There are a number of operator guidance manuals available describing the detailed requirements and procedures necessary to comply with the TCR. It is the operator’s responsibility to obtain the necessary information to insure compliance.

Chlorine Residual Monitoring

The state of West Virginia requires total chlorine monitoring at the time of bacteriological sampling. Results of all microbiological quality samples must be submitted to OEHS. Certified laboratories must perform coliform analyses. **It is the responsibility of the owner or operator to send OEHS a copy of the results by the 10th day of the next month.** For example, results must be submitted by February 10th for samples collected in January. If the results are not received your system will receive a violation for failing to monitor. This shows how important it is to keep copies of all laboratory results. In West Virginia, copies of all microbiological monitoring results must be kept for a minimum of 5 years.
A coliform sampling plan is a written document that public water systems should use to consistently and accurately perform sampling that is representative of drinking water in the system’s distribution system. All public water systems must develop and implement a written coliform sampling plan. These plans need to be reviewed and approved by OEHS District Office Engineers during the on-site sanitary survey inspection.

The sampling sites should be representative of and provide adequate coverage of the distribution network and pressure zones. It is also important to select sampling sites that provide the least amount of negative influence on the water sample. Examples of sites to avoid include leaky or dirty faucets, sampling points in areas with little or no water use, swivel faucets, custodial or industrial use sinks, or any location you believe to be questionable. Many water systems utilize dedicated sampling stations in the distribution system that are used exclusively for sampling purposes, eliminating many outside influences that may potentially impact water samples. If, when you go to collect your routine sample, you find the water tap has been damaged or is leaking, use one of your alternate sites until you can repair the original. Likewise, if the sample bottle is damaged or you believe you may have contaminated it, do not use it. Select a clean one for your sample and return the other to the lab empty.

What should the sampling plan include?
The plan should include the following elements.

- A brief narrative of the water system that includes source, treatment, storage, distribution system maintenance, pressure zones, number of connections, population, etc.
- A map of the distribution system with the routine and repeat sampling sites identified, distribution piping locations, entry points, etc.
- A sample site plan that includes sample site addresses, the minimum number of samples collected, rotation schedule of sample sites, chlorine residual monitoring, contact person and phone number, sampling procedure or protocol, etc. In the event that a routine site sample tests positive for coliform or *E. coli*, the plan should list repeat sites for each routine site and should include a written procedure of what steps the water system will follow to investigate a positive sample.
TYPES OF COLIFORM SAMPLES

Testing for total coliforms is performed by collecting water samples. There are five types of samples that a NCWS generally takes. These are routine samples, repeat samples, additional routine samples, replacement samples, and special samples.

Compliance Samples
Routine Samples: Routine samples are those that you are required to take on a routine basis, whether that is monthly or quarterly. These samples, as well as the other types of samples noted below, are collected from representative locations throughout your water system in 125mL containers. These samples, as with all coliform samples, should be submitted to a certified laboratory for testing within 30 hours after collection.

Repeat Samples: These compliance samples are required each time a coliform positive sample is detected and must be collected within 24 hours after you receive notification of a positive coliform result. These samples confirm any positive detection of coliform bacteria and help to identify the extent of the coliform contamination within your system, the type of coliform present, and the location or source of the contamination. Samples above and beyond the repeat sample requirement may be collected until either the system no longer detects the presence of any coliform bacteria or until the source of the contamination has been identified, eliminated, and/or prevented.

If any routine sample is total coliform-positive, repeat samples are required.
Within 24 hours of learning of a total coliform-positive ROUTINE sample result, at least 3 REPEAT samples must be collected and analyzed for total coliforms:
- One REPEAT sample must be collected from the same tap as the original sample.
- One REPEAT sample must be collected within five service connections upstream.
- One REPEAT sample must be collected within five service connections downstream.
- Systems that collect 1 ROUTINE sample per month or fewer must collect a 4th REPEAT sample anywhere in the system.

If any REPEAT sample is total coliform-positive:
- The system must analyze that total coliform-positive culture for fecal coliforms or E.coli.
- The system must collect another set of REPEAT samples, as before, unless the MCL has been violated and the system has notified the state.

Additional ROUTINE Sample Requirements
- A positive ROUTINE or REPEAT total coliform result requires a minimum of five ROUTINE samples be collected the following month the system provides water to the public unless waived by the state.

Non-Compliance Samples
Additional Samples: This type of sample refers to any additional non-compliance samples required by your state primacy agency in order to help identify the extent of the contamination, provide better information about water quality, or to provide further monitoring of the water within the PWS.
Replacement Samples: If a compliance sample is collected and does not get analyzed, it may be replaced by a new sample. There are several reasons why a certified laboratory may not analyze samples:

- The sample may be outdated or too old;
- The sample container may be broken upon arrival at the lab;
- The sample container may have leaked;
- The sample amount may be not be enough (remember, 100mL is the minimum);
- The sample does not indicate a date or time to tell the lab how old it is; and
- The sample may have been frozen.

Special Samples: These, too, are non-compliance samples that are collected due to repairs, complaints, or maintenance reasons. Collection of these types of samples is often necessary to ensure that coliform has not entered your distribution system as a result of events such as water line repairs, line breaks, or routine maintenance.
UNACCOUNTED-FOR WATER

Unaccounted-for water is water which is produced but is not used or sold to the consumers. There are many factors which are considered in the determination of the percentage of unaccounted-for water. This percentage is a measure of the efficiency of the operation of the system.

Factors to Consider

Factors to consider in the determination of the unaccounted-for water are:

- The water produced - Is this quantity accurately determined, has the meter been calibrated, and does the meter measure all of the water?
- The water used for water system purposes such as chemical feed water, backwash water, fire hydrant and blow-off flushing - How is each of these uses measured? Careful accounting in the treatment plant is necessary because, in some plants, plant use water is used before the master meter, and in other plants, it is used after the master meter.
- The water sold or used by the consumer - A meter testing program should be in place to periodically test the accuracy of the meters. All consumer use must be accounted for. For example, free water may be provided for parks, cemeteries, or for municipal purposes at sewage treatment plants, borough buildings, and fire companies. All of this water must be measured and accounted for.
- Water used for fire fighting purposes - This water only can be estimated, but some careful calculations by the fire company and the water system can develop a reasonable value.

Basic Calculation

The basic calculation is:

\[(\text{Water Available for Sale}) - (\text{Water Sold or Used}) \times 100 = \text{Percent of Unaccounted for Water}\]

Water Available for Sale

1. The water available for sale is the water produced, adjusted for the company uses of water, as follows:
 - Subtract any plant use water that is taken off the system after the master meter,
 - Subtract any water used on the distribution system for flushing fire hydrants and blow-offs and for fire protection.

2. The water sold or used is the total quantity of water sold to customers through meters plus an estimate of all unmetered uses either to flat rate customers or for public purposes.

3. When making the calculation, the time interval must be considered since the amount of water sold only may be determined monthly, quarterly, or annually, and usually all meters are not read on the same day or at the same time. It is recommended that a one-year (four-quarters or 12-months) period be considered since this will level off the variables for meter reading, and seasonal variations. This calculation can be made on a monthly basis by using the totals for the previous 12 months.

Normal Operating Ranges
The normal operating range should not exceed 15% for a well maintained system. There are many factors which should be considered when determining what an acceptable percent of unaccounted-for water is for a particular system. These are:

1. The age and condition of the system. A very old water system which has deteriorated pipe will have many undetected leaks at joints. Although the goal may be the 15%, it only can be accomplished by replacing large segments of the system. Therefore, a range of 35 to 40% may not be unusual until funds for replacement of mains are available.

2. The pressure in the system can affect the rate of leakage. Thus high pressure systems may have a higher percentage of unaccounted-for water.

3. The number of customers per mile of main can affect the unaccounted-for-water. Therefore, if a system has a high ratio of miles of pipeline to the number of customers, the percentage of unaccounted-for water will increase.

4. Under-registration of customer meters or unauthorized use can increase the percentage of unaccounted-for water.

Control of Unaccounted-for Water

To reduce the percentage of unaccounted-for water, the following are suggested actions:

1. Calculate the cost of producing 1,000 gallons or 100 cubic feet of water and then calculate the amount of money which is being "lost" as unaccounted-for water each month. By identifying this cost, you can justify the cost of the programs to correct the problem.

2. A meter testing program should be installed to test the master meter and other system meters at least annually and to test all customer meters (on a continuing basis) at least once every 10 years.

3. An adequate leakage control program includes:
 - A program of listening to all fire hydrants valves and services to detect leaks;
 - The use of detector type meters on fire lines;
 - Training personnel to listen for leaks and to detect unauthorized use of water; and
 - Review of meter readings to detect stopped meters or obvious under-registering meters.

4. A record of leaks repaired and the estimated amount of water lost at each leak can help to justify replacement of sections of mains which have a high incidence of leakage.
PUBLIC RELATIONS

Public relations is a way of promoting understanding, support, and goodwill between your water system and the public. You can influence the public's image of your system by following the public relations steps presented in this training guide.

Good public relations doesn't happen overnight. It must be developed over time. Moreover, once your system has gained the community's confidence, you must continue your efforts to ensure that the support you need will always be there.

The main purpose of public relations is to gain and keep the public's confidence and support. Good relations with the public can also:
- Strengthen the system's position in the community;
- Help the system form fair guidelines and policies;
- Promote goodwill between employees and customers;
- Educate the public about water use;
- Overcome misconceptions about the water system;
- Gain the support of local government;
- Weaken the impact of any negative publicity the system may receive; and
- Justify reasons for capital improvements or rate hikes.

Once you know where you are and where you are going, you need to determine the public image your system needs to have to accomplish your goals. Your public image is an accurate picture of your operation that spotlights key aspects of your work.

For example, if your system needs public support for a major purchase, it may help to let customers know about the complexity of water system operation. Most people don't realize that water system operation can be very difficult. Customers may be more likely to support water system improvements if they understand that water system operation is a demanding job that requires the best equipment available.

A different goal may be to build public confidence in your system. To do this, let people know about the good work you are doing! Assure them that system employees are well trained. You may wish to inform the public of any continuing education classes your employees have attended. Also make sure the public knows that their water is tested. You may even want to report the positive findings from state health agencies or labs.

Even though most water systems are organized as "nonprofits," they must operate like any business. Because the success of any business relies on its customers, systems should keep customers informed and respond promptly to their needs.

A good public relations practice to develop is to always let customers know when their service may be affected. This might include:
- Interruption of service;
- Repairs (especially when the streets are affected);
- Changes in water taste, odor, or pressure;
- Unusual findings during state health inspections;
- Proposed changes in rates; and

- 384 -
New construction.

Explain what is happening, apologize for any inconvenience, and reassure the public that what is happening is in their best interest.

Early in this step of the public relations cycle, your system needs to select a representative. Your representative should be someone from the system that can communicate well with the public. This representative should also:

- Be well-respected in the community;
- Have a pleasant appearance;
- Be a good speaker;
- Get along with people; and
- Be knowledgeable about your system.

Select your representative carefully. In some cases, you may wish to choose more than one. Make sure the person you choose reflects the image you want for your system.

The two main forms of communication are personal communication and written communication. Personal communication is more than just talking to the public. A person's appearance, behavior and work habits are also important elements of personal communication. Specifically, personal communication is any direct professional contact between system personnel and the public they serve. Personal communication can occur in the office, in the field, or in any other public setting. Always practice positive personal communication in the office. Ask office staff to greet customers promptly and give them full attention.

The telephone is a powerful public relations tool. Not only is it much faster than written messages, but it also often eliminates the need to travel. A major disadvantage of the phone is that you can't see the person you're talking to. This may make it more difficult to tell how a caller is reacting to your conversation. You have to rely totally on the person's spoken message. Because the spoken message is so important, employees should be aware of how they answer and use the phone. Some guidelines for effective telephone communication are listed below.

Answering the Telephone

1. *Always answer the phone promptly.* Clearly state your name and the name of your system.
2. *Try to sound pleasant you are talking.* Some people actually smile when they are on the phone because it makes them sound more pleasant.
3. *Never interrupt callers.* This makes them feel that you are bored or disinterested.
4. *Listen carefully.* If you are unsure of what callers are talking about, repeat what they have said to make sure you have understood them.
5. *Don't put customers on hold for more than 30 seconds.* If you must search through records or discuss the subject with someone else, take the caller's name and number and call back as soon as you can.

Handling customer complaints

Complaints present an excellent opportunity to build positive customer relations. A customer whose complaint receives prompt attention can become a valuable supporter. When dealing with complaints in the office or on the phone:
• Listen and sympathize;
• Do NOT argue;
• Ask questions;
• Work to find an acceptable course of action for both sides; and
• Follow-up the complaint to make sure the problem is resolved.

No one enjoys receiving complaints, but resolving a complaint quickly and professionally can actually improve your image with the public.

Personal communication in the field
The way system employees act and appear when they are working can have a big impact on your system's public image. Employees should appear neat and clean whenever possible. They should also be encouraged to be patient and courteous to every customer. Pay special attention to the way employees work at construction sites:

• Has the system constructed barriers to prevent possible accidents?
• Have employees completed the job quickly and safely?
• What was the condition of the area after the work was finished?
• Did the system replace or repair any property that was affected by the job?

Each employee represents your system. Only by behaving and dressing professionally can they reflect a positive public image.

Personal communication door-to-door
The most visible people working for your system are the meter readers. Because of this, it is especially important that they have a professional appearance and a positive attitude. Sometimes it is necessary for other employees to go door-to-door. For example, they may need to inform customers when service is going to be interrupted. Ask them to take the time to explain what is happening and answer any questions the customer might have.

The condition of your system's facilities and equipment also affects your public image. Check all visible parts of the system. One of the first things visitors see is the storage tank. Keep it painted and free from graffiti. Hydrants are another highly visible part of the system. Make sure they are painted and free from obstructions such as weeds and trash. It is also important that vehicles and equipment are clean and in good repair. Check the system office and other buildings as well, such as garages, pump and well houses, and storage sheds. Keep these neat and well-maintained.

Reporting bad news
One of the hardest parts of public relations is giving customers bad news. Business letters can be an effective way to report bad news and make customers feel that their individual concerns are taken seriously. Report honestly and openly what has happened. Reassure people that their water system is working to correct the problem. It is up to you to work with the media and use other communication techniques to make sure the public really knows what has happened.

If you have a good working relationship with the media, you may also be able to participate in a feature story or an interview about the event. In either case, you have an opportunity to give your system's response to the situation and to reassure the public that you are working to solve the problem.
Interview tips
Whenever television or newspaper reporters create their own stories, they often prefer to conduct
interviews. If you are going to be interviewed:
1. Be prepared. Make sure you know the subject you are supposed to talk about.
 Have the facts and figures to support your comments.
2. Stick to the subject.
3. Try not to answer questions with just "yes" or "no." These may cut your interview
 short.
4. Stay calm. Don't lose your temper or get pulled into an argument.
5. Keep your answers short but include all necessary information.
6. Speak in generalities whenever possible.
7. Keep in mind that you are reflecting your water system, not yourself.
8. Never lie or try to bluff the interviewer. If you don't know, say so.
9. If possible, practice. Sometimes the interviewer will rehearse with you if you ask.

Public relations work never ends. As long as your system is providing an essential service, you
will need to communicate with customers and other members of the public about the good work
you do.
CUSTOMER COMPLAINTS

When dealing with a customer complaint, a water utility must keep a full and complete record of all relative information. At a minimum, keep the:
1. Date of the complaint;
2. Name of complainant;
3. Nature of complaint; and,
4. What the utility did to resolve it.

If an informal complaint becomes a formal complaint case, the PSC will attempt to determine what the utility did during the informal complaint stages. Without proper documentation, there is not much of a defense.

The PSC frequently sends a representative to investigate or may ask the utility to send copies of their records. The PSC will want to look at the records to determine what the utility has already done. If the utility’s actions seem to be complete and proper the PSC will be prone to join the utility in a statement that no further action is necessary, but if no record exists to show that the complaint has been investigated by the utility, the utility may lose because no investigation can be proven. Complaint records are kept primarily to protect the utility. The required information for water customers is in Water Rule 4.5. Once a formal complaint is filed against a utility, the Commission will issue an order for the utility to respond to the complaint within 10 days.

Based on the utility’s response, PSC will conduct its investigation which may include a field investigation and/or a request for additional information from the complainant and/or the utility. If there is no settlement of issues, then the case will be set for an evidentiary hearing. Also, any formal complaint can result in a general investigation of the utility. One can easily see where good record keeping will be invaluable in such situations. Utilities are not required to keep a record of inquiries. The difference between a complaint and an inquiry hinges on whether the utility has to take some investigative or corrective action. If a customer calls and states that his/her water is off, to fix a leak or to flush lines, for example, then it is not a complaint. If a customer calls and says his/her bill is incorrect and in a phone conversation, it is determined that the customer was correct and in a phone conversation, it is determined that the customer was correct and the utility has to issue a corrected bill, then it was a complaint.

When handling complaints either over the phone or in person, it is a good idea to take notes. Another important point to remember is that after the customer has finished airing the complaint, repeat back the alleged complaint. This ensures that the problem has been identified correctly. Remember it is beneficial to practice good public relations (PR) to keep complaints at a minimum. Surprisingly, handling customer complaints can be one of the most effective opportunities to build positive customer relations. Handling a complaint promptly and courteously can turn a negative situation into a positive one and can cause an unhappy customer to become a valuable supporter. In this regard, when dealing with complaints, always strive to:
• Listen and sympathize.
• Do not argue.
• Negotiate to find an acceptable solution.
• Follow up to make sure customer is satisfied and problem is resolved.

Complaint records are also a valuable management tool as it is a good idea to go through such records from time to time or at the end of the year to see what types of complaints were received and note any patterns that may have developed. For example, several water quality complaints from the same area may indicate a problem that has gone undetected until the number and
frequency of complaints are acknowledged. By dealing with one customer at a time, the immediate problem may be solved, but if that problem keeps recurring, then the underlying problem is not being identified or corrected.

All individual complaint records are to be kept until a year end summary has been prepared which is to be used as a permanent record. The summary has to show the character of the complaints made, the number of each type received in each month, and the disposition of the complaints.
POTABLE VS. PALATABLE

We have discussed at some length now various types of pathogens and methods of destroying them in the process of making water potable -- safe to drink. This is highly important, but it is not the whole story; for water must be palatable as well as potable. What makes water palatable? To be palatable water should be free of detectable taste and odors. Turbidity, sediment, and color also play important roles in determining whether water is palatable.

Various odors and tastes may be present in water. They can be traced to many conditions. Unfortunately, the causes of bad taste and odor problems in water are so many, it is impossible to suggest a single treatment that would be universally effective in controlling these problems.

Tastes are generally classified in four groups -- sour, salt, sweet and bitter. Odors, on the other hand, possess many classifications. There are some 20 of them commonly used, all possessing rather picturesque names. In fact, the names in many cases, are far more pleasant then the odors themselves, to name a few of them -- nasturtium, cucumber, geranium, fishy, pigpen, earthy, grassy, and musty. Authorities further classify these odors in terms of their intensity from very faint, faint, distinct and decided to very strong. All taste buds and olfactory organs are not necessarily of the same acuteness, but generally you should not be aware of any tastes or odors in water if there is to be pleasure in drinking it. If you are conscious of a distinct odor, the water is in need of treatment.

In many cases it is difficult to differentiate between tastes and odors. Both the taste buds and olfactory organs work so effectively together it is hard to determine where one leaves off and the other begins. To illustrate: hydrogen sulfide gives water an "awful" taste, yet actually it is the unpleasant odor of this gas that we detect rather than an unpleasant taste. Unfortunately there is little in the way of standard measuring equipment for rating tastes and odors. Tastes and odors in water can be traced to a number of factors. They include:

- Decaying organic matter;
- Living organisms;
- Iron, manganese and the metallic products of corrosion;
- Industrial waste pollution from substances such as phenol;
- Chlorination;
- High mineral concentrations; and,
- Dissolved gases.

In general, odors can be traced to living organisms, organic matter and gases in water. Likewise, tastes can be traced generally to the high total minerals in water. There are, however, some tastes due to various algae and industrial wastes. Now how can these objectionable tastes and odors be removed from water?

Some tastes and odors, especially those due to organic substances, can be removed from water simply by passing it through an activated carbon filter. Other tastes and odors may respond to oxidizing agents such as chlorine and potassium permanganate. Where these problems are due to industrial wastes and certain other substances, some of the above types of treatment may completely fail. In some cases, for example, chlorination may actually intensify a taste or odor problem. Potassium permanganate has been found to be extremely effective in removing many musty, fishy, grassy and moldy odors. Two factors make this compound valuable: it is a strong
oxidizing agent; and it does not form obnoxious compounds with organic matter. However, a filter must be used to remove the manganese dioxide formed when the permanganate is reduced.

In any case, you may have to try a number of methods in an attempt to rid a water of objectionable tastes and odors. If methods considered here do not work, it may be more economical to seek out a new source of drinking water.
COMMON INQUIRIES

Color, Taste and Odor Problems in Drinking Water
At times, water can have an unusual odor, taste or appearance. In most cases, these aesthetic characteristics do not pose a public health threat. The first step in solving a water quality problem is to identify whether it originates from the household plumbing or the water utility. One way to tell is to ask others in the service area if they have a similar problem. Below are typical concerns, their most common causes, and what to do about them.

Discolored Water
If the water changes color suddenly – no matter what color it becomes – it could indicate a public health concern. Do not use the water. Something likely has disturbed the direction or rate of water flow in the water main, such as a water surge caused by a power outage or use of a fire hydrant.

Avoid running hot water if the cold water is discolored. This will prevent filling the hot water tank with discolored water. If you are washing clothes, you can minimize the potential for staining by stopping the washer while it is full and waiting until clear water is available to finish.

Green or blue water is usually caused by corrosion of copper plumbing. If corrosion is occurring, dripping water will leave a bluish-green stain on porcelain fixtures. Certain metals, such as copper, that get into drinking water from corrosion may pose a health concern. The problem could be in the home’s piping or corrosive water from the utility.

Black or dark brown water is usually due to manganese or pipe sediment and should clear up without further action when the sediment settles in the water main. Manganese does not pose a threat to human health. If it doesn’t clear after a few minutes of flushing the cold water faucets and toilets, wait about an hour and try again.

Brown, red, orange or yellow water is usually caused by iron rust. Rusty water can be caused by galvanized iron, steel or cast iron pipes either in a home or business, or the water main. While unpleasant and potentially damaging to clothes and fixtures, iron in drinking water is not a human health concern.

Milky white or cloudy water is almost always caused by tiny air bubbles. If the water is white, fill a clear glass with water and set it on the counter. If the water starts to clear at the bottom of the glass first, the cloudy or white appearance is a natural occurrence. It is not a health threat and should clear in about 5 minutes.

Taste and Odor Problems
If the taste or odor occurs at every water faucet on the property, the cause could be the water supply. If it occurs only in certain faucets, the problem is with the fixture and pipe supplying those specific faucets. If the problem goes away after running the water for a few minutes, the problem is somewhere in your plumbing system.

Petroleum, gasoline, turpentine, fuel or solvent odor is rare and potentially serious. It is possible a leaking underground storage tank may be near your water supply. Do not use the water.
Metallic taste is usually due to minerals, such as iron or copper that can leach into water from pipes. Metals such as zinc and manganese are less common causes. Only a certified laboratory can analyze the water to determine if metals are present. Certain metals may have human health effects if consumed over long periods of time.

Chlorine, chemical or medicinal taste or odor is usually caused by the addition of chlorine to the water by your public water system, or the interaction of chlorine with a build-up of organic matter in your plumbing system. This is not a health threat. The best way to reduce taste and odor is to run the faucet for several minutes, put some water in a container, and store it in the refrigerator.

Sulfur or rotten egg taste or odor is most commonly caused by bacteria growing in your sink drain or water heater. But, in some cases, this smell is caused by naturally occurring hydrogen sulfide. To problem-solve the cause, put a small amount of water in a narrow glass, step away from the sink, swirl the water around inside the glass and smell it. If the water has no odor, then the likely problem is bacteria in the sink drain. If the water does have an odor, it could be your water heater. This occurs if the hot water has been unused for a long time, the heater has been turned off for a while, or the thermostat is set too low. If the drain or water heater have been ruled out, and the odor is definitely coming from the tap water, do not use the water.

Moldy, musty, earthy, grassy or fishy taste or odor is commonly caused by bacteria growing in a sink drain or from organic matter such as plants, animals or bacteria that are naturally present in lakes and reservoirs. To problem-solve the cause, put a small amount of water in a narrow glass, step away from the sink, swirl the water around inside the glass and smell it. If the water has no odor, then the likely problem is the sink drain. If it does have an odor, the source could be organic matter in your drinking water. Although harmless, it can affect the taste and smell of your drinking water even at very low concentrations. The best way to reduce taste and odor is to run the faucet for several minutes, put some water in a container, and store it in the refrigerator.
A **Standard Operating Procedure (SOP)** is a set of instructions or steps someone follows to complete a job safely, with no adverse impact on the environment (and which meets regulatory compliance standards), and in a way that maximizes operational and production requirements. Write SOPs for any processes an individual or group performs: unloading raw materials, manufacturing products, shutting down an operation, repairing a faulty electrical circuit, and thousands of other workplace activities.

Write different SOPs for people who perform jobs by themselves, people who work together on a job, and people who supervise other people doing a job. The primary audience for an SOP, however, is the person who will perform a particular job. Consider such factors as the age, education, knowledge, skills, experience and training of a person who will perform a job, and the "social culture" or work history within which the individual works. Some work cultures disdain SOPs so you must work to overcome rejection.

SOPs also can be used by managers, government safety inspectors, environmental regulators, lawyers, engineers, planners, vendors, contractors and customers. Sometimes the same SOP material is used to write a description of how a job is done—a process—which can be useful if a company representative must explain operations to the media and public.

Ideally, SOPs should be written before a job is begun. Test SOPs before putting them into final application. Revise SOPs after an on-the-job trial. Also revise SOPs when any changes or modifications are made to equipment, machinery, buildings or other structures, or procedures within the immediate work area that might affect performance of a job or the "environment" in which it is performed.

You can't write SOPs for every job overnight, so set priorities. Write SOPs when new equipment or processes create new work situations. Write or rewrite SOPs when new information suggests benefits from modifying work practices to improve performance. Accident investigations might show you that procedural, safety and environmental guidelines are insufficient, incomplete, or even missing for certain jobs or parts of jobs.

Systematically update all safety and environmental guidelines by asking workers to evaluate existing SOPs, work practice guidelines and other documents that contain work, safety and environment guidelines. Then rank these jobs as to which should be revised first through last. These procedures could be revised, perhaps by the groups that ranked them.

SOP writers often don't know how long an SOP should be. Sometimes writers are pressured by operations supervisors to "make it short" rather than comprehensive. Clearly these supervisors don't understand the purposes and audiences an SOP serves.

SOPs can be either long, short or both. Because SOPs are used for a variety of reasons and audiences, they first must be comprehensive, which means they are as long as necessary to cover a job. For long SOPs or for jobs performed infrequently, it pays to keep the long-form SOP handy. Once an employee is familiar with a process, he or she will most likely be able to perform a series of short SOP steps from memory. These steps can be written as a short-form SOP. If someone is going to use a short-form SOP, it should be prepared after a full long-form SOP has
been tested and approved and should be handed out after an employee has passed the appropriate training.

- Keep in mind that the average person is uncomfortable following a long list of steps for the following reasons:
 - A long list looks formidable, which makes the task daunting and tedious for many people who then don't want to perform the steps.
 - A long list is difficult for your eyes to follow. You forget where you are on the list and forgetting leads to mistakes.
 - A long list scares people and makes them nervous or anxious to "get it over with."
 - A long list can hide steps that should be done with caution.
 - A long list is difficult for writers to write while ensuring that the step sequence is clear.

The solution to SOPs that involve a long list of steps is to break the steps into logical sections of about 10 steps per section, such as "Getting ready for the process," "Initial steps," "Final steps."

Most importantly, SOPs should be reviewed by several people qualified to evaluate the SOP in terms of its completeness and clarity of safety, environmental and operational components.

Write SOPs for the following reasons:

1. To provide individuals who perform operations with all the safety, health, environmental and operational information required to perform a job properly;
2. To ensure that operations are done consistently to maintain quality control of processes and products;
3. To ensure that processes continue and are completed on a prescribed schedule;
4. To ensure that no failures occur in manufacturing and other processes that would harm employees or anyone in the surrounding community;
5. To ensure that approved procedures are followed in compliance with company and government regulations;
6. To serve as a training document for teaching users about a process;
7. To serve as a historical record of the how, why and when of steps in a process for use when modifications are made to that process and when a SOP must be revised; and,
8. To serve as an explanation of steps in a process that can be reviewed in incident investigations that seek to improve safety practices and operating conditions.

What should be included in a standard operating procedure (SOP)?
Here are suggestions for what to include in an SOP. Be sure to modify as necessary. Use an organization that favors simplicity and ease of reading.

1. Write a title (with a descriptive verb) that defines the purpose of the SOP. Include the word "safety" in the title, if applicable.
2. Use document reference numbers and revision dates on the title or cover page and a second page such as the table of contents or first page of text.
3. Identify general and specific points of activity for which an SOP has been written.
4. State the purpose of the SOP including the specific audience (user) in one or two sentences. Include information about process and regulatory standards, and both desirable and undesirable consequences.

5. Write a "scope" statement that tells what related subjects the SOP will not cover if there is any chance someone will be confused and make a mistake. Use scope statements for two reasons: to focus your attention as a writer and to clarify things for a reader. Many SOPs do not require scope statements, but consider the value of one before dismissing it as too much trouble to write.

6. List by category, any items or tools required for following the SOP whenever they apply. Think of this list as being a "tools and parts kit" for doing a job. Use general terms for common tools and equipment. For example, instead of listing every tool, a chemist or technician might simply list "gas cylinder tools." Add other categories or subcategories as desired. Sometimes a table instead of a paragraph is an appropriate format for this information.

7. Give an overview of the steps in the SOP that describes the process in terms of its major functions. Include anticipated safety, health, environmental and operational results.

8. Describe the machinery, mechanism, processing system and major components. Complete operating instructions contain overall descriptions of the major system and its components so that readers can orient themselves to the system as a whole and to its major parts.

9. Define terms and concepts. If the SOP contains terms and concepts that readers may be unfamiliar with, define these in their own paragraph so that readers (1) know that there are unusual words or concepts, and (2) can find them easily for use when needed. A long list of terms may fit better in a glossary at the beginning of a document. If you decide that a simple list of terms and definitions is better, include the list within the write-up, perhaps right before the list of steps to be performed.

10. Place safety warnings, cautions and notes prominently within the SOP before the actual step to be described. Never place safety items at the end of a step. Depending on the SOP, a writer might include an overall warning or caution that describes the general safety concerns. This should be placed at the beginning of an SOP where it is the first thing read after the title on the first page of text. If more than one safety warning, caution or note exists, list them in boldface type at the beginning of the SOP. The purpose of placing the cautions first is to alert the reader to read the warnings first. Often a page of safety cautions appears immediately after the title page and before the first page of text. Write warnings and cautions in clear sentence form. If there are only one or two warnings, these might be best placed at the top of the first page of text rather than on a separate page. The goal is to place warnings where the reader will read them. Sometimes this placement is determined by the size of the final printed version of an SOP. It is easy to place several warnings on an 8-1/2"x11" sheet of paper, but not so easy to do on a pocket-size handbook. Write Notes to provide people with information that can help them satisfy safety, health, environmental and operational procedural requirements. For example, if it is permissible to use an extension cord of a certain length, this information should be stated in the SOP.
11. List and explain the process steps in sequential order in which an SOP user should perform the steps.

12. If two steps must be done at once, explain them in a sentence that clearly says so. You may wish to highlight (with italics or underlining) the first part to differentiate it from the actual step.

13. Provide a more detailed explanation if a reader needs more information to fully understand the reason for performing a step.

14. Provide readers with alternative steps to take in case a desired step does not work.

15. When an SOP is time-dependent, indicate the times clearly.

16. When a step depends on informational input (data), include the source, reference document number and date if possible.

17. Decide where to use graphics (drawings, photographs and thumbnail icons) to communicate clearly. Well-labeled drawings often are better than text. Use drawings of labeled (named) parts of objects to show proper relationshipships hips and orientations among the parts or other objects. Show the positioning of hand tools, other tools and even hands and feet if applicable when work is to be performed. For example, show the positioning of a wrench or direction for turning a valve. Show the individual parts of a device in a final assembled position. Consider using thumbnail graphics to visually alert readers that they have come to a safety item.

18. Write a reference and writers' section that includes a complete list of source material used for the SOP. If someone wants to confirm something, they will know where to look. List the names of those who wrote the SOP.

19. Test the SOP in the field and then develop troubleshooting instructions. Anyone who has ever assembled a consumer product knows there are always problems to solve either while trying to assemble something or after it has been assembled. Anticipate all these problems for a reader and include them in a troubleshooting section. Also incorporate troubleshooting tips at each step in a process where they actually occur.

20. One way to anticipate safety, health, environmental and operational problems is to ask an inexperienced person to "walk through" a mock (inactive) process (under close supervision of an expert) and try the steps. Such unknowledgeable person could ask questions or demonstrate behaviors that an experienced or familiar person would not.
SAFETY PROGRAMS

Every water system, regardless of size, needs to develop and implement a safety program to prevent injury to its employees and to avoid accidents involving the public. The development of a safety program should include information regarding potential job hazards, preventive safety measures, proper safety and emergency procedures for the use and operation of tools and equipment, and the proper methods of handling and reporting accidents and injuries. One person should be designated the responsibility for overseeing and maintaining the safety program.

A safety program is designed to maintain a safe workplace. All employees will be required to comply with all aspects of the safety program. The safety program should include a written safety plan designed to promote employee participation in the safety program. The Safety Plan should list procedures which have been established as part of the water system's safety program which identifies and describes water system hazards and provides safety measures.

The following sections will not outline the exact safety procedures that should be written in the Safety Plan. Rather, it will serve as a guide for recommended job activities for which safety procedures should be established and listed, as well as other general topics related to the safety program.

Identification and Description of Hazards

The safety hazards associated with water supply systems are numerous and varied. Water system personnel should be made aware of all hazards, where these hazards are present in the water system, and how they may affect the employees. The following list identifies some of the general hazards faced by water system employees:

1. Bodily injury caused by falls, improper lifting, improper use of tools and equipment, and accidents involving moving mechanical equipment;
2. Electrical shock and burns;
3. Injury caused by improper chemical handling;
4. Exposure to chlorine gas;
5. Injury caused by improper entrance into confined spaces; and
6. Trenching and shoring cave-ins.

The Safety Plan also should include a detailed description of each hazard, including where each hazard may be present and what the health risk from each hazard may be to the employee.

Recommended Safety Program

Once the job hazards have been identified and described, it is important to outline the proper safety procedures which should be used when performing each job task to reduce these hazards as much as possible. Therefore, the Safety Plan should provide detailed safe operating procedures for specific aspects of water system employee job responsibilities. Recommended safety procedures for each of these water system job tasks can be found in the AWWA's Manual M3, Safety Practices for Water Utilities, as well as in other reference materials on water supply system operation. Manufacturer's literature also may be a good source of safety procedures for some of the tools, equipment, and machinery.
MAINTENANCE PROGRAM

An important aspect of any effective and efficient water service organization is a maintenance program. The objectives of a maintenance program should be to eliminate the interruption of service caused by equipment failure and to extend the service life of all equipment for as long as practically possible and economically feasible. With this in mind, a good maintenance program will consist of a preventive maintenance plan, a general maintenance plan, an emergency maintenance plan, and a program evaluation. While each of these program topics will be discussed separately below, it is important to remember the effectiveness of the overall maintenance program will be determined by how closely each plan fits together.

Preventive maintenance provides a water system with three basic benefits:
1. Better service to all customers;
2. Increased equipment service life; and,
3. Efficient use of resources.

A preventive maintenance plan can be established by the use of planned work orders, planned work schedules and an evaluation process for all water system equipment. The use of planned work orders is an integral part of any preventive maintenance plan. Planned works orders should include the complete procedures to be performed, the total manpower (number of personnel, skill type, and total time) needed, and a list of materials required for the each preventive maintenance job. Compiling all planned work orders in an organized work schedule provides an efficient way of using the resources available to the water system, completing the work in a timely manner, and producing a framework for quality maintenance records. Equipment evaluation is one area overlooked when discussing a preventive maintenance plan. In order to evaluate the effectiveness of any preventive maintenance plan, a benchmark of the existing conditions of all equipment is required. When preventive maintenance work is completed, the water system should have the ability to evaluate equipment performance on both a short term and long term basis. Also, the preventive maintenance work itself can be evaluated to better improve the individual components of the plan. Preventative maintenance can be considered a time efficient and cost effective way of maintaining a water system. Scheduled preventative maintenance can lower total maintenance costs by allowing the system to purchase quality materials when time is available to obtain the best price. Scheduled preventative maintenance can be time efficient by the productive use of manpower and work schedules to complete the work while retaining some control over both the maintenance and operation of the equipment.

General maintenance is usually the largest component of any maintenance program. A general maintenance plan can be established by developing planned work orders, prioritizing work within daily, weekly, and monthly schedules, developing a material purchasing system, and evaluating the overall performance of all general maintenance work. As with the preventive maintenance plan, the use of planned work orders is vital to an effective general maintenance plan. Planning work in advance can assure that proper procedures are followed by each staff member, correct materials and supplies are available to complete the work, and a record of the completed work is available for filing in project and equipment files. Reviewing planned work orders will provide the water system with a means of fine tuning their general maintenance plan. Another key is a prioritized work schedule. Prioritizing work on a daily, weekly, and monthly basis creates a productive working environment for personnel. This results in more maintenance being completed at a much lower overall cost. Efficient maintenance requires that adequate materials and supplies be available for use at a moment’s notice. It is important that water
systems realize the need for developing a material purchasing system. This system would include a complete material and supply inventory, standardized purchasing procedures, and a tracking method of all materials used by the water system. It is important to have a centralized area designated for the storage of all materials and supplies used by the water system. An evaluation process should be developed to determine the overall performance of all maintenance work along with its effectiveness over the service life of the equipment. Changes in the types of procedures and materials used can be detected and corrected during the evaluation process. Also, the efficiency of a water system’s use of resources and manpower as they pertain to the general maintenance plan can be determined.

An emergency maintenance plan is an invaluable component of most maintenance programs. This specialized plan will save both time and money when utilized properly. The foundation in developing an emergency plan is knowing the capabilities and limitations of the water system’s staff and resources. The next step is to formulate contingencies for all types of emergencies that your water system has encountered in the past or could encounter in the future. It is important to be as specific as possible in identifying the many emergencies that could occur. Finally, a comprehensive list of consulting engineers, contractors, technical sales representatives, and material supply companies should be developed. This list should contain information as to the contact people, phone numbers (business and emergency), and the specific time and reasons each would be contacted. This contact list and a material/supply inventory list should be updated as often as possible and readily available for use at any time. Experience and planning are the keys to assuring the emergency maintenance plan operates properly. When the dust has settled and normal operation has resumed, a comprehensive evaluation of all actions taken as a part of the emergency plan should occur in a timely manner. At this point, evaluating the actions taken will hopefully result in a better emergency plan and, thus, an improved response to the next emergency.

The final component of a comprehensive maintenance program is a program evaluation. The only way to improve a water system’s maintenance program is to periodically evaluate it to ensure the main objectives of eliminating the interruption of service caused by equipment failure and extending the service life of all equipment for as long as practically possible and economically feasible are being met. By applying the knowledge and experience gained from successful and unsuccessful maintenance work along with proper planning and training, the evaluation process will improve the overall maintenance program by strengthening the individual preventive, general, and emergency plans. As more evaluations are conducted, the water system will find itself gaining more experience, performing improved maintenance work, increasing the service life of all equipment, benefiting from more productive work, saving more money, and providing the best possible water service to the customers.

Preventive Maintenance

Preventive maintenance involves the regular inspection, testing, and replacement or repair of equipment and operational systems. As a best management practice (BMP), preventive maintenance should be used to monitor and inspect equipment and other conditions that could cause breakdowns or failures of structures and equipment. A preventive maintenance program can prevent breakdowns and failures through adjustment, repair, or replacement of equipment before a major breakdown or failure occurs.

Preventive maintenance procedures and activities are applicable to almost all facilities. This concept should be a part of a general good housekeeping program designed to maintain a clean
and orderly work environment. Preventive maintenance takes a proactive approach and seeks to prevent problems before they occur. Preventive maintenance programs can also save a facility money by reducing the likelihood of having a system breakdown. In addition, a preventive maintenance program can be an effective community relations tool.

The primary limitations of implementing a preventive maintenance program include:

- Cost;
- Availability of trained preventive maintenance staff technicians; and,
- Management direction and staff motivation in expanding the preventive maintenance program.

Key Program Components

Elements of a good preventive maintenance program should include the following:

- Identification of equipment or systems that may malfunction.
- Establishment of schedules and procedures for routine inspections.
- Periodic testing of plant equipment for structural soundness.
- Prompt repair or replacement of defective equipment found during inspection and testing.
- Maintenance of a supply of spare parts for equipment that needs frequent repairs.
- Use of an organized record-keeping system to schedule tests and document inspections.
- Commitment to ensure that records are complete and detailed, and that they record test results and follow-up actions. Preventive maintenance inspection records should be kept with other visual inspection records.

Implementation

The key to properly implementing and tracking a preventive maintenance program is through the continual updating of maintenance records. Update records immediately after performing preventive maintenance or repairing an item and review them annually to evaluate the overall effectiveness of the program. Then refine the preventive maintenance procedures as necessary.

No quantitative data on the effectiveness of preventive maintenance as a BMP is available. However, it is intuitively clear that an effective preventive maintenance program will result in improved water system.

Costs

The major cost of implementing a preventive maintenance program is the staff time required to administer the program. Typically, this is a small incremental increase if a preventive maintenance program already exists at the facility.
SAFETY

Based on past studies, the water and wastewater industry has one of the highest injury rates in the nation. Workers in these areas are involved in construction and excavations, confined spaces, hazardous chemicals, and mechanical equipment that pose a serious injury risk when proper training, equipment, and procedures are not utilized. The Occupational Safety and Health Administration (OSHA) is responsible for developing regulations regarding worker safety and protection.

This section will introduce the topic of safety but is not intended to provide detailed information on all the safety topics important to operators. Each of us is responsible for his/her own safety and for the safety of others working in or entering our facilities. The water industry is one of the most hazardous, so it is very important for operators to be informed about situations that pose a safety risk.

Safety Conditions
You may encounter potentially hazardous conditions on a regular basis while operating, maintaining, and repairing water system equipment. You should be aware of these hazards and use good judgment when you encounter a potentially hazardous situation. The life you save may be your own.

Accident prevention is everyone’s job, but it is the employer who is ultimately responsible for providing a safe workplace. Some of the hazards an operator may encounter include, but are not limited to:

- Lifting injuries
- Electric shock
- Slips and falls
- Chemical burns
- Eye injuries
- Excavation accidents (cave-ins)
- Construction accidents
- Inhalation accidents (dust, toxic gases and vapors)
- Oxygen deficient confined spaces (less than 19.5% oxygen)

Accidents are the result of unsafe actions by employees or unsafe conditions that exist in the water system. Unsafe actions include, but are not limited to:

- Removing or disabling machinery safety devices
- Failure to wear personal protective equipment
- Using equipment or tools not designed for the job
- Using defective equipment or tools
- Standing on or riding the outside of moving equipment
- Failure to secure or tie down heavy loads
- Operating vehicles, including heavy equipment, at an unsafe speed
- Failure to use lockout/tagout devices

Some of the more common unsafe conditions found at a small water system may include, but are not limited to:

- Poor housekeeping
- Improper storage of chemicals
- Doors removed from electrical panels
- Machinery guards or safety devices missing
- Fire and explosion hazards
- Low clearance hazards
- Improperly secured ladders or scaffolds
- Protruding objects
- Inadequate lighting
- Noise above safe decibel levels
- Lack of warning placards
- Confined spaces

You should keep your water system facilities clean and orderly. Emergency equipment and doorways should be kept clear and machine guards replaced after repairing equipment. Doors should be replaced on the electrical panels when you complete a wiring job or replace a breaker.

The door to the pump house or chlorine room should open outward for ease in entering and leaving the structure. Abnormal machine or equipment operation, electrical hazards or other unsafe conditions should be corrected promptly. Do not let unsafe conditions become commonplace. Eventually, an unsafe condition will result in an accident.

Unfortunately, it is often the 5 minute task that causes many injuries. Quick fixes usually promote unsafe acts. Do not let 5 minute tasks result in an injury to yourself or an employee.

Become skilled at recognizing unsafe conditions. Your knowledge of unsafe conditions and unsafe acts gives you foresight to correct a hazardous situation before an accident occurs. Together materials handling, falls, falling objects and machinery cause more than 60% of all workplace injuries.

Employers are responsible for providing employees with the proper safety equipment and training in its use. They are also responsible for development and implementation of safety policies for their workplace. The employees, after proper training, are responsible for recognizing the safety issues; following approved safety procedures, and properly utilizing the associated safety equipment.

Personal Protective Equipment

Personal Protective Equipment (PPE) may be uncomfortable and increase stress, but is for your protection. When wearing PPE, the body’s ability to cool is usually diminished. Nevertheless, PPE is frequently required to reduce the risk of injury. PPE includes steel-toed boots, safety glasses or goggles, face shields, earplugs, gloves or chemical protective clothing. The employer is responsible for providing PPE for their employees.

Respiratory protection equipment is commonly used because of the danger of inhalation, which provides a route of entry into the bloodstream for dangerous volatile chemicals. There are 2 types of respiratory protection devices called respirators: air purifying and air supplying. Both consist of a face piece connected to either an air source or an air-purifying device. The air-purifying respirator uses cartridges with filters to purify air before it is inhaled. This type of protection is not adequate in an oxygen deficient atmosphere.
Hazard Communications
OSHA established the Hazard Communication Standard in 1986. The standard was created to provide an information system on hazardous chemicals for both employers and employees. The Haz-Com Standard requires employers to ensure their employees know what hazardous materials exist in the workplace, how to safely use these materials, and how to deal with any emergencies that arise during use. Employers are required to provide the proper safety equipment, train employees in the safe use of any hazardous materials on a jobsite, and maintain records of both.

Producers of hazardous materials are required to provide customers with a Material Safety Data Sheet (MSDS) for each individual chemical or material. MSDS's must be kept on file and available to employees. Employee training should also include how to read and understand the information on the MSDS. The hazards that are involved fall into two basic categories: Health Hazards and Physical hazards.

Health hazards refer to immediate or long-term harm to the body caused by exposure to hazardous chemicals. Physical hazards like flammability or corrosivity can also cause injury to skin, eyes and the respiratory system. MSDS's are divided into 8 sections.
1. Manufacturers Contact Information
2. Hazardous Ingredients/Identity Information
3. Physical/Chemical Characteristics
4. Fire and Explosion Hazard Data
5. Reactivity Data
6. Health Hazard/First Aid Information
7. Precautions for Safe Handling and Use
8. Control/Cleanup Measures

NFPA Color-Code Warning System
OSHA uses a system based on the National Fire Protection Association (NFPA) diamond warning symbol as part of the MSDS information. This code is also required for all container labels. The NFPA symbol has four color-coded diamond-shaped sections. The top (Red) diamond is the Flammability Hazard rating. The left (Blue) diamond is the Health Hazard rating. The right (Yellow) diamond is the Reactivity Hazard rating. The bottom (White) diamond contains special symbols to indicate properties not explained by the other categories. A number–based rating system is used for each section, ranging from 0 – least dangerous to 4 – extremely dangerous.

Lock Out/Tag Out
Lock out/tag out (LOTO) regulations deal with the need to isolate a machine from its energy source to prevent it from starting while work is being done in and around the equipment. Energy sources can include electrical energy, hydraulic energy, pneumatic energy, thermal energy, and chemical energy. This can be either active energy or stored energy. Stored energy can take many forms. Some examples of stored energy are; electrical energy stored in capacitors, pneumatic energy stored in a compressor tank, and hydraulic water pressure in an isolated line. Any stored energy must be dissipated prior to working on the equipment. Employers are responsible for establishing an “Energy Control Plan” for LOTO work and supply each worker with their individual LOTO locking devices.
LOTO requires workers to isolate and de-energize these sources and lock and tag them prior to working on the equipment or process. Only trained personnel should conduct lock out/tag out procedures. Each individual involved in the work should attach their personal LOTO lock to the disconnect or isolation device. This assures that the equipment cannot be restarted until each individual is finished with their task and is clear of the equipment. Tags are used to provide information regarding the date and nature of the lockout and the individual responsible for removing the lockout. Tags are not substitutes for locks. Any isolation that can be locked must be locked and tagged. Lockout devices may also include chains, valve clamps, wedges, jacks, or key blocks.

Anyone who enters a LOTO work area must be informed that a LOTO situation exists. If they are to be involved in the work, they must also apply their own LOTO locks. Workers that leave a LOTO site must take their LOTO locks with them. If work is not completed at the end of a shift, all LOTO locks must be removed and be replaced with an equipment protection lock until work resumes. If equipment must be temporarily restarted, the LOTO must be removed during the restart and reapplied before work can continue.

Confined Space Entry

The water and wastewater industry has one of the highest numbers of confined space injuries per capita in the country. The vast majority of confined space related injuries result in fatalities. Another disturbing fact is that 40% of the confined space related fatalities are people who tried to rescue someone else from a confined space.

A confined space is defined by the following parameters. It must be large enough for a person to enter and do work. It has openings that make entry or exit difficult. It is not intended for continuous occupancy. Any open surface tank that is deeper than four feet is also considered a confined space. Confined spaces fall into two categories; permit required and non-permit required. A confined space becomes permit required when it has potential for a hazardous atmosphere, potential for engulfment, a hazardous internal configuration, or other recognized hazards such as dangerous equipment or hot work (welding, cutting torch, etc.) that is in progress.

All employees involved in confined space entries must have the proper training in entry procedures and use of safety equipment. An entry supervisor is responsible for conducting the testing and completing the permit. Atmospheric testing should include oxygen concentration, Lower Explosive Limit for explosives, and any toxic gases that may be present. The oxygen concentration must be between 19.5-23.5%. The alarm point for explosives is 10% of Lower Explosive Limit (LEL).

An attendant must be present and stationed outside the confined space to monitor the entrants while they are working. The attendant must maintain constant verbal and visual communications with the entrants. The attendant must also be prepared to instruct the entrants to exit the confined space should the equipment fail or the entrants exhibit impaired judgment.

Any confined space must be tested for a hazardous atmosphere before the entry. Monitoring must continue while the entrants are in the confined space. Permit required confined spaces also require ventilation during the entry and self-contained or supplied air must be used if ventilation fails to produce a safe atmosphere. Permit required confined space entries also require rescue equipment such as a harness and tripod for emergency rescues. If the space is configured in a
way that prevents the use of self-rescue equipment, an emergency rescue team must be on-site during the entry. When the entry is completed, the entry supervisor must complete the permit form and file a copy with the appropriate supervisor and a confined space entry master file. Non-permit confined spaces must be reassessed periodically. Any non-permit space can be reclassified, as permit required, based on the results of these assessments.

Excavation Safety

Proper shoring or sloping of trenches and excavations is a major safety issue for many distribution system operators. New construction usually involves more controlled conditions than emergency repairs. Excavations for emergency repairs almost always involve digging and shoring in saturated soils and flooded trenches. A "competent person" must supervise all excavation operations. A competent person is someone who has extensive training in soil mechanics and shoring operations.

All trenches over 4 feet deep must have ladder from entry and exit. The ladders must extend at least 3 feet above the top of the trench and ladders must not be stationed more than 25 feet apart. Trenches over 5 feet deep must be properly shored or sloped to protect entrants from trench wall collapse and cave-ins. The competent person must determine the proper Maximum Allowable Slope, formerly referred to as Angle of Repose, for the given soils type. Soils are either Type 1, 2, or 3. Type 3 soils are the least stable and require the shallowest Maximum Allowable Slope. Spoil from the excavation must be placed at least 2 feet from the edge of the excavation (farther with more unstable soils.)

Shoring must be installed without worker entry into the excavation. Trench boxes are useful for long trenches where it can be moved along the trench. This saves some of the setup and breakdown time required with shoring. Ladders must be positioned so that workers can enter and exit without stepping outside the shoring or trench box. Excavations may become confined spaces if they are located close to a source of potentially hazardous gases (underground gas tanks, landfills, etc.)

Environmental Hazards

Heat Stress

Heat stress is caused by a number of interacting factors, including environmental conditions, clothing, workload, etc., as well as the physical and conditioning characteristics of the individual. Since heat stress is one of the most common illnesses associated with heavy outdoor work conducted with direct solar load and, in particular, because wearing PPE can increase the risk of developing heat stress, workers must be capable of recognizing the signs and symptoms of heat related illnesses. Personnel must be aware of the types and causes of heat-related illnesses and be able to recognize the signs and symptoms of these illnesses in both themselves and their coworkers.

Heat Rashes

Heat rashes are one of the most common problems in hot work environments. Commonly known as prickly heat, a heat rash is manifested as red papules and usually appears in areas where the clothing is restrictive. As sweating increases, these papules give rise to a prickling sensation. Prickly heat occurs in skin that is persistently wetted by unevaporated sweat, and heat rash
papules may become infected if they are not treated. In most cases, heat rashes will disappear when the affected individual returns to a cool environment.

Heat Cramps
Heat cramps are usually caused by performing hard physical labor in a hot environment. These cramps have been attributed to an electrolyte imbalance caused by sweating. It is important to understand that cramps can be caused both by too much or too little salt. Cramps appear to be caused by the lack of water replenishment. Because sweat is a hypotonic solution (plus or minus 0.3% NaCl), excess salt can build up in the body if the water lost through sweating is not replaced. Thirst cannot be relied on as a guide to the need for water; instead, water must be taken every 15 to 20 minutes in hot environments.

Heat Exhaustion
Heat exhaustion occurs from increased stress on various body organs due to inadequate blood circulation, cardiovascular insufficiency, or dehydration. Signs and symptoms include pale, cool, and moist skin; heavy sweating; dizziness; nausea; headache; vertigo; weakness; thirst; and giddiness. Fortunately, this condition responds readily to prompt treatment. The signs and symptoms seen in heat exhaustion are similar to those of heat stroke, which is a medical emergency. Workers suffering from heat exhaustion should be removed from the hot environment, be given fluid replacement, and be encouraged to get adequate rest.

Heat Stroke
Heat stroke is the most serious form of heat stress. Heat stroke occurs when the body’s system of temperature regulation fails and the body’s temperature rises to critical levels. This condition is caused by a combination of highly variable factors, and its occurrence is difficult to predict. Heat stroke is a medical emergency. The primary signs and symptoms of heat stroke are confusion; irrational behavior; loss of consciousness; convulsions; a lack of sweating (usually); hot, dry skin; and an abnormally high body temperature. If body temperature is too high, it causes death. The elevated metabolic temperatures caused by a combination of workload and environmental heat load, both of which contribute to heat stroke, are also highly variable and difficult to predict. If a worker shows signs of possible heat stroke, professional medical treatment should be obtained immediately. The worker should be placed in a shady area and the outer clothing should be removed. The worker’s skin should be wetted and air movement around the worker should be increased to improve evaporative cooling until professional methods of cooling are initiated and the seriousness of the condition can be assessed. Fluids should be replaced as soon as possible. The medical outcome of an episode of heat stroke depends on the victim’s physical fitness and the timing and effectiveness of first-aid treatment.

Cold Stress
Cold stress normally occurs in temperatures at or below freezing, or under certain circumstances, in temperatures of 40°F. Extreme cold for a short time may cause severe injury to exposed body surfaces or result in profound generalized cooling, causing death. Areas of the body that have high surface area-to-volume ratio, such as fingers, toes, and ears, are the most susceptible. Two factors influence the development of a cold weather injury: ambient temperature and the velocity of the wind. For instance, 10 °F with a wind of 15 miles per hour (mph) is equivalent in chilling effect to still air at 18 °F.

Frostbite
Frostbite is the generic term for a local injury resulting from cold. Several degrees of tissue damage are associated with frostbite. Frostbite of the extremities can be categorized into:

- Frost Nip or Incipient Frostbite — characterized by sudden blanching or whitening of skin.
- Superficial Frostbite — skin has a waxy or white appearance and is firm to the touch, but tissue beneath is resilient.
- Deep Frostbite — tissues are cold, pale, and solid; extremely serious injury.

Systemic Hypothermia

Systemic hypothermia is caused by exposure to freezing or rapidly dropping temperature. It can be fatal. Its symptoms are usually exhibited in five stages:

- Shivering;
- Apathy, listlessness, sleepiness, and (sometimes) rapid cooling of the body to less than 95°F;
- Unconsciousness, glassy stare, slow pulse, and slow respiratory rate;
- Freezing of the extremities; and
- Death.

Trauma sustained in freezing or sub-zero conditions requires special attention because an injured worker is predisposed to secondary cold injury. Special provisions must be made to prevent hypothermia and secondary freezing of damaged tissues in addition to providing for first-aid treatment. To avoid cold stress, site personnel must wear protective clothing appropriate for the level of cold and physical activity. In addition to protective clothing, preventive safe work practices, additional training, and warming regimens may be utilized to prevent cold stress.

Biological Hazards

Portions of the field work will be conducted in grassy and wooded areas along the river. Numerous biological hazards may be present, including poison ivy, snakes, thorny bushes and trees, ticks, mosquitoes, and other pests.

Tick-Borne Disease

The following tick-borne diseases may present hazards when conducting field work. These diseases are transmitted primarily by the deer tick, which is smaller and redder than the common wood tick. The disease may be transmitted by immature ticks, which are small and hard to see. The tick may be as small as a period on this page.

Lyme Disease

The disease commonly occurs in the spring and summer and is transmitted by the bite of infected ticks. Symptoms of Lyme disease include a rash or a peculiar red spot, like a bull’s eye, which expands outward in a circular manner. The victim may have headache, weakness, fever, a stiff neck, swelling and pain in the joints, and eventually, arthritis.

Tick repellant containing diethyltoluamide (DEET) should be used when working in tick-infested areas, and pant legs should be tucked into boots. In addition, workers should search the entire body every three or four hours for attached ticks. Ticks should be removed promptly and carefully without crushing, since crushing can squeeze the disease-causing organism into the skin. A gentle and steady pulling action should be used to avoid leaving the head or mouth parts in the skin.
Poisonous Plants Hazards
Poisonous plants may be present all along the river. Personnel should be alerted to their presence, and instructed on methods to prevent exposure. The main control is to avoid contact with the plant, cover arms and hands, and frequently wash potentially exposed skin. Particular attention must be given to avoiding skin contact with objects or protective clothing that have touched the plants. Treat every surface that may have touched the plant as contaminated, and practice contamination avoidance. If skin contact is made, the area should be washed immediately with soap and water, and observed for signs of reddening.

Snakes
The possibility of encountering snakes exists, specifically for personnel working in grassy, wooded, and vegetated areas. Snake venoms are complex and include proteins, some of which have enzymatic activity. The effects produced by venoms include neurotoxic effects with sensory, motor, cardiac, and respiratory difficulties; cytotoxic effects on red blood cells, blood vessels, heart muscle, kidneys, and lungs; defects in coagulation; and effects from local release of substances by enzymatic actions. Other noticeable effects of venomous snake bites include swelling, edema, and pain around the bite, and the development of ecchymosis (the escape of blood into tissues from ruptured blood vessels). To minimize the threat of snake bites, all personnel walking through vegetated areas must be aware of the potential for encountering snakes and the need to avoid actions which might lead to encounters, such as turning over logs, etc. If a snake bite occurs, an attempt should be made to safely kill the snake for identification. The victim must be transported to the nearest hospital within 30 minutes; first aid consists of applying a constriction band and washing the area around the wound to remove any unabsorbed venom.

Spiders
Personnel may encounter spiders during work activities along the river. Two spiders are of concern, the black widow and the brown recluse. Both prefer dark sheltered areas such as basements, equipment sheds and enclosures, and around woodpiles or other scattered debris. The black widow is shiny black, approximately one inch long, and found throughout the United States. There is a distinctive red hourglass marking on the underside of the black widow’s body. The bite of a black widow is seldom fatal to healthy adults, but effects include respiratory distress, nausea, vomiting, and muscle spasms. The brown recluse is smaller than the black widow and gets its name from its brown coloring and behavior. The brown recluse is more prevalent in the southern United States. The brown recluse has a distinctive violin shape on the top of its body. The bite of the brown recluse is painful and the bite site ulcerates and takes many weeks to heal completely.

To minimize the threat of spider bites, all personnel walking through vegetated areas must be aware of the potential for encountering these arachnids. Personnel need to avoid actions that may result in encounters, such as turning over logs and placing hands in dark places such as behind equipment or in corners of equipment sheds or enclosures. If a spider bite occurs, the victim must be transported to the nearest hospital as soon as possible; first aid consists of applying ice packs and washing the area around the wound to remove any unabsorbed venom.

System security
The three “D”s of security are: Deter, Detect and Delay. Intrusion should be deterred, and detected if it occurs. Intruders should be slowed down (delayed) as much as possible to allow more time for their apprehension.
Water system security steps include:

1. Vulnerability assessment - Identify vulnerabilities such as doors, windows, hatches and locations in remote areas.
2. Eliminate or mediate vulnerabilities - Install locks and use them. Install fences, alarms and security lights. Ask for police patrols. Consider asking neighbors to watch over your facilities for you (adopt-a-facility).
3. Emergency response - Know who to call in an emergency. Create a list of emergency telephone numbers.
 - Fire
 - Police
 - IDEM
 - Local health department
 - Critical users
 - Your boss
 - Government officials
 - Nearby water systems
 - Laboratories
 - Contractors
 - Chemical suppliers
 - Parts/equipment suppliers
 - Insurance agent
 - Local media (radio, TV and newspaper)

Plan ahead for your emergencies. Think about what might go wrong, and try to plan for it. Like a good scout, “be prepared.” Always remember, people come first, then property. Be safe and do not take unnecessary risks.
PERSONAL SAFETY

Sometimes you may be working in remote areas that could potentially put you at risk of getting lost or hurt. You should take the following steps to ensure you can work safely when conducting sanitary surveys and field visits in remote locations:

Plan Ahead
- Notify your supervisor or a fellow worker that you will be working in a remote area.
- Have a check-in time set up before you leave. A check-in/check-out procedure can be used so that it is known where you are and when you have safely returned at the end of the day.
- Carry a fully charged cell phone (available for checkout at the regions).
- Know your site’s emergency call-in number or your supervisor’s pager number.
- Always wear your ID badge to clearly identify yourself.
- Wear appropriate footwear for the conditions, such as non-slip soled shoes for rough trails, mossy or slippery rocks, uneven or slippery floors, ladders, etc.
- If you are injured or involved in an accident, report to your supervisor immediately and submit an Accident/Incident Report Form.

Vehicle Safety
- Always drive defensively and safely. Obey all driving laws, including wearing your seat belt. Be aware of other vehicles and surroundings.
- Know who to call if your vehicle breaks down.
- If someone bumps you from behind or is following you, don’t pull over at that spot, especially if it is isolated. Go to a public place with lots of lights and people and report to your supervisor immediately or call 911.
- Driving precautions in rural areas: watch for debris and potholes; lanes are narrow, be aware of oncoming traffic; watch for surface changes; watch for slow going vehicles; be aware of unguarded railroad crossings; and watch for animals.

Methamphetamine (Meth) Labs
- Be alert to homes whose view to the interior is obstructed in some manner by blinds, or the windows are boarded over, etc. Some drug labs have excessive security (more than one deadbolt, metal security doors, bars on windows, or vicious dogs). They also may have yards filled with discarded propane tanks and glassware that could have been used in a meth lab operation.
- Meth labs can be identified by their strong smell, similar to stale cat urine.
- Be careful when walking in yards with discarded glassware that could have been used in a meth lab operation because the chemicals they contained can contaminate you. Also, there may be booby traps set around the premises of the building.
- You SHOULD leave if you suspect the area is a meth lab operation.

In the Event of an Assault
If you are attacked or threatened you have the right to defend yourself in any manner necessary proportionate to the threat. How you choose to defend yourself will depend on the circumstances of the assault and your abilities. Consider that you could be attacked and think about what you can or are willing to do to protect yourself. There is no one guaranteed method of defense. You will need to consider alternatives and optional responses.
Trust Your Instincts

If you are feeling uncomfortable, cancel the visit, reschedule, or request back-up from another staff member or the police. If you are in a tight situation:

- Don’t show fear. Watch their body language.
- Try not to show any facial expression.
- Control your breathing.
- Speak slowly and lower the pitch of your voice, talk from your diaphragm.
- Watch your hands so they don’t move nervously. Maintain personal space.
- Maintain eye contact, but don’t try to stare anyone down.
- Don’t challenge, but be assertive, especially if lewd comments are made.
- Check your watch; say you need to call your office because they are waiting for your call.
- Repeat what you are there for.
- Stand up and leave.
INCOMPATIBLE CHEMICALS

The purpose of this section is to assist with the identification of chemicals in use at water treatment plants that should be stored separately. Several chemicals commonly used in water treatment are considered “incompatible” with one another. *The term “incompatible” applies to chemicals that could create a hazardous reaction (such as production of toxic gas, accelerated corrosion, or generation of excessive heat through an exothermic reaction, which could result in an explosion and fire) if mixed together in their concentrated form.* Depending on the type, form, concentration, and amount of chemical, this reaction could be catastrophic, resulting in a loss of life and rendering the water plant inoperable. It is therefore important to store chemicals in a manner that will prevent incompatible substances from coming into contact with one another.

Chemicals commonly used at water treatment plants can be divided into 6 broad groups of “incompatible” chemicals. To ensure the safety of system personnel and the system itself, each of these groups of chemicals is considered incompatible with the other and therefore should be stored separately. These groups are listed in the table below.

<table>
<thead>
<tr>
<th>Group</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Acids</td>
</tr>
<tr>
<td>II</td>
<td>Bases</td>
</tr>
<tr>
<td>III</td>
<td>Salts & Polymers</td>
</tr>
<tr>
<td>IV</td>
<td>Adsorption Powders</td>
</tr>
<tr>
<td>V</td>
<td>Oxidizing Powders</td>
</tr>
<tr>
<td>VI</td>
<td>Compressed Gases</td>
</tr>
</tbody>
</table>

Examples of chemicals that should not be stored near each other, and the resulting consequence of improper storage including the following:

<table>
<thead>
<tr>
<th>Incompatible Chemicals - Examples</th>
<th>Hazardous Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powdered Activated Carbon - PAC</td>
<td>Excessive heat generation, with the possibility of explosion and fire. Note: PAC alone is extremely combustible</td>
</tr>
<tr>
<td>(an adsorption powder) mixed with Potassium Permanganate (an oxidizing powder.)</td>
<td></td>
</tr>
<tr>
<td>Calcium Hypochlorite (a combination base/oxidizer) exposed to moisture or mixed with a viscous fluid such as oil.</td>
<td>Excessive heat, fire or explosion possible. Can provide an ignition source for combustible materials</td>
</tr>
<tr>
<td>Concentrated Sulfuric Acid (a strong acid) mixed with Concentrated Sodium Hydroxide (a strong base)</td>
<td>Excessive heat and liquid explosion. Note: Highly concentrated acids and bases when mixed together, will have a much more hazardous reaction than weak acids and bases.</td>
</tr>
<tr>
<td>Calcium Oxide (a strong base that is only available in powdered form) exposed to moisture</td>
<td>Excessive heat, fire. Can provide an ignition source for combustible materials.</td>
</tr>
</tbody>
</table>

Liquid chemicals should be stored separately from dry chemicals, regardless of which their compatibility group. Certain concentrated dry chemicals will produce an exothermic reaction when exposed to liquid or even small amounts of moisture. All chemicals should be stored in secure, well-ventilated areas that are free of moisture (especially dry chemicals), freezing
conditions (especially liquid chemicals), excessive heat, ignition sources, and flammable/combustible materials. Products such as paint, antifreeze, detergent, oil, grease, fuel, solvent, and beverages should never be stored in the same area as water treatment chemicals.

Listed below are a number of chemicals commonly used in water treatment, listed by their compatibility group. Because there is a wide range of chemicals available and in use today, all chemicals used in the water industry may not included on the following tables. OSHA Regulation 29.CFR.1910.1200 (Hazard Communication) requires that all organizations that handle hazardous chemicals, including water systems, maintain a MSDS in their files for each chemical stored onsite. If there is a question regarding the properties or incompatibility of any chemical encountered at a plant, the appropriate MSDS should be reviewed.

Group I: Acids

<table>
<thead>
<tr>
<th>Name</th>
<th>Common Name</th>
<th>Available Forms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetic Acid</td>
<td>Ethanoic Acid</td>
<td>Liquid</td>
</tr>
<tr>
<td>Hydrofluosilicic Acid</td>
<td>Fluosilic Acid</td>
<td>Liquid</td>
</tr>
<tr>
<td>Hydrogen Fluoride Acid</td>
<td>Hydrofluoric Acid</td>
<td>Liquid</td>
</tr>
<tr>
<td>Hydrochloric Acid</td>
<td>Muratic Acid</td>
<td>Liquid</td>
</tr>
<tr>
<td>Nitric Acid</td>
<td>Nitric Acid</td>
<td>Liquid</td>
</tr>
<tr>
<td>Sulfuric Acid</td>
<td>Sulfuric Acid</td>
<td>Liquid</td>
</tr>
</tbody>
</table>

Group II: Bases

<table>
<thead>
<tr>
<th>Name</th>
<th>Common Name</th>
<th>Available Forms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium Hydroxide</td>
<td>Hydrated Lime</td>
<td>Dry</td>
</tr>
<tr>
<td>Calcium Oxide</td>
<td>Quicklime</td>
<td>Dry</td>
</tr>
<tr>
<td>Calcium Hypochlorite</td>
<td>HTH</td>
<td>Dry</td>
</tr>
<tr>
<td>Sodium Bicarbonate</td>
<td>Sodium Bicarbonate</td>
<td>Dry</td>
</tr>
<tr>
<td>Sodium Carbonate</td>
<td>Soda Ash</td>
<td>Dry</td>
</tr>
<tr>
<td>Sodium Hydroxide</td>
<td>Caustic Soda, Lye</td>
<td>Liquid, Dry</td>
</tr>
<tr>
<td>Sodium Hypochlorite</td>
<td>Bleach</td>
<td>Liquid</td>
</tr>
<tr>
<td>Sodium Silicate</td>
<td>Water Glass</td>
<td>Liquid</td>
</tr>
</tbody>
</table>

Group III: Salts/Polymers

<table>
<thead>
<tr>
<th>Name</th>
<th>Common Name</th>
<th>Available Forms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum Sulfate</td>
<td>Alum</td>
<td>Liquid, Dry</td>
</tr>
<tr>
<td>Copper Sulfate</td>
<td>Blue Stone</td>
<td>Liquid, Dry</td>
</tr>
<tr>
<td>Ferric Chloride</td>
<td>Ferrichlor</td>
<td>Liquid, Dry</td>
</tr>
<tr>
<td>Ferric Sulfate</td>
<td>Ferrifloc</td>
<td>Dry</td>
</tr>
<tr>
<td>Ferrous Sulfate</td>
<td>Coppras</td>
<td>Liquid, Dry</td>
</tr>
<tr>
<td>Polyaluminum Chloride</td>
<td>PAC or PACl</td>
<td>Liquid</td>
</tr>
<tr>
<td>Polyelectrolytes (Cationic, Anionic, Non-ionic)</td>
<td>Polymer</td>
<td>Liquid, Dry</td>
</tr>
<tr>
<td>Sodium Aluminate</td>
<td>Soda Alum</td>
<td>Liquid, Dry</td>
</tr>
<tr>
<td>Sodium Fluoride</td>
<td>Sodium Fluoride</td>
<td>Liquid, Dry</td>
</tr>
<tr>
<td>Sodium Hexametaphosphate</td>
<td>Glassy Phosphate</td>
<td>Dry</td>
</tr>
<tr>
<td>Sodium Phosphate</td>
<td>Sodium Phosphate</td>
<td>Liquid, Dry</td>
</tr>
<tr>
<td>Zinc Orthophosphate</td>
<td>Zinc Ortho</td>
<td>Liquid</td>
</tr>
</tbody>
</table>
(1) Liquid and Dry chemicals should be stored separately even if they are in the same compatibility group. Certain concentrated dry chemicals, like calcium hypochlorite and calcium oxide (quicklime) will produce an exothermic reaction when exposed to liquid or even small amounts of moisture.

Group IV: Adsorption Powders

<table>
<thead>
<tr>
<th>Name</th>
<th>Common Name</th>
<th>Available Forms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powdered Activated Carbon</td>
<td>PAC</td>
<td>Dry</td>
</tr>
<tr>
<td>Granular Activated Carbon</td>
<td>GAC</td>
<td>Dry</td>
</tr>
</tbody>
</table>

Group V: Oxidizing Powders

<table>
<thead>
<tr>
<th>Name</th>
<th>Common Name</th>
<th>Available Forms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potassium Permanganate</td>
<td>Permanganate (PotPer)</td>
<td>Dry</td>
</tr>
</tbody>
</table>

Group VI: Compressed Gases

<table>
<thead>
<tr>
<th>Name</th>
<th>Common Name</th>
<th>Available Forms</th>
<th>Incompatible Chemicals Within This Category(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia</td>
<td>Ammonia</td>
<td>Liquid, Gas</td>
<td>Chlorine</td>
</tr>
<tr>
<td>Chlorine</td>
<td>Gas Chlorine</td>
<td>Liquid, Gas</td>
<td>Ammonia</td>
</tr>
<tr>
<td>Carbon Dioxide</td>
<td>Dry Ice</td>
<td>Liquid, Gas</td>
<td>-</td>
</tr>
<tr>
<td>Sulfur Dioxide</td>
<td>Sulfur Dioxide</td>
<td>Liquid, Gas</td>
<td>-</td>
</tr>
</tbody>
</table>

(2) Each compressed gas should have its own separate storage / feed area
(3) Chlorine and Ammonia
WATER SECURITY

Security practices should be incorporated into a utility's every day business functions. Activities such as fence cutting and lock picking, often dismissed as harmless, may be indications of more serious threats to a water or wastewater system. Utilities must be prepared to respond to this type of threat, as well as a wide range of other emergencies, including natural disasters. Improved security preparations provide for a more effective and efficient response.

Water and wastewater utilities are responsible for taking action to protect their infrastructure. The federal government and EPA are helping utilities to accomplish these actions by providing tools, trainings, and technical assistance.

Several resources designed specifically to help small drinking water and wastewater utilities better protect their systems are available through this site.

BIOTERRORISM ACT - On June 12, 2002, President Bush signed into law the Public Health Security and Bioterrorism Preparedness and Response Act of 2002 (PL 107-188, referred to as the Bioterrorism Act). In the Bioterrorism Act, Congress recognizes the need for drinking water systems to undertake a more comprehensive view of water safety and security. The Act amends the SDWA and specifies actions CWSs and the EPA must take to improve the security of the Nation's drinking water infrastructure.

The Bioterrorism Act defines small community drinking water systems as those serving a population of more than 3,300 but less than 50,000. If a community drinking water system serves more than 3,300 people, that utility must:

- Conduct a vulnerability assessment
- Certify to EPA that the assessment has been completed
- Send a copy of the assessment results to EPA
- Certify that the system has an emergency response plan.

VULNERABILITY ASSESSMENTS - Vulnerability assessments help water systems evaluate susceptibility to potential threats and identify corrective actions that can reduce or mitigate the risk of serious consequences from adversarial actions (e.g., vandalism, insider sabotage, terrorist attack, etc.). Such an assessment for a water system takes into account the vulnerability of the water supply (both ground and surface water), transmission, treatment, and distribution systems. It also considers risks posed to the surrounding community related to attacks on the water system. An effective vulnerability assessment serves as a guide to the water utility by providing a prioritized plan for security upgrades, modifications of operational procedures, and/or policy changes to mitigate the risks and vulnerabilities to the utility’s critical assets. The vulnerability assessment provides a framework for developing risk reduction options and associated costs. Water systems should review their vulnerability assessments periodically to account for changing threats or additions to the system to ensure that security objectives are being met. Preferably, a vulnerability assessment is "performance-based,” meaning that it evaluates the risk to the water system based on the effectiveness (performance) of existing and planned measures to counteract adversarial actions.
The following are common elements of vulnerability assessments. These elements are conceptual in nature and not intended to serve as a detailed methodology:

1. Characterization of the water system, including its mission and objectives;
2. Identification and prioritization of adverse consequences to avoid;
3. Determination of critical assets that might be subject to malevolent acts that could result in undesired consequences;
4. Assessment of the likelihood (qualitative probability) of such malevolent acts from adversaries;
5. Evaluation of existing countermeasures; and
6. Analysis of current risk and development of a prioritized plan for risk reduction.

The vulnerability assessment process will range in complexity based on the design and operation of the water system itself. The nature and extent of the vulnerability assessment will differ among systems based on a number of factors, including system size, potential population affected, source water, treatment complexity, system infrastructure and other factors. Security and safety evaluations also vary based on knowledge and types of threats, available security technologies, and applicable local, state and federal regulations.

EMERGENCY RESPONSE PLANS - An Emergency Response Plan (ERP) is a documented plan that describes the actions that a CWS would take in response to various major events. A major event refers to:

- Credible threats, indications of terrorism, or acts of terrorism;
- Major disasters or emergencies such as hurricanes, tornadoes, storms, earthquakes, fires, flood, or explosion regardless of cause; and
- Catastrophic incidents that leave extraordinary levels of mass casualties, damage, and disruption severely affecting the population, infrastructure, environment, economy, and government functions.

Protecting public health is the primary goal of community drinking water systems, and having an up-to-date and workable ERP helps achieve this goal in any crisis situation. The Bioterrorism Act amends the SDWA by adding, among other requirements, section 1433. Section 1433(b) requires community water systems serving populations greater than 3,300 to either prepare or revise an ERP that incorporates the results of its Vulnerability Assessment (VA). The ERP must include “plans, procedures, and identification of equipment that can be implemented or utilized in the event of a terrorist or other intentional attack” on the CWS. The ERP also must include “actions, procedures, and identification of equipment which can obviate or significantly lessen the impact of terrorist attacks or other intentional actions on the public health and the safety and supply of drinking water provided to communities and individuals.”

Core elements form the basis, or foundation, for responding to any major event. EPA has identified 8 core elements common to an ERP that you should plan to utilize or bring to bear during water emergencies:

1. System Specific Information;
2. CWS Roles and Responsibilities;
4. Personnel Safety;
5. Identification of Alternate Water Sources;
6. Replacement Equipment and Chemical Supplies;
7. Property Protection; and
8. Water Sampling and Monitoring

Your ERP may contain sensitive information, so you should consider steps you need to take to ensure the security of your ERP. Sensitive information should be placed in appendices, or in sections that are not readily available to unauthorized personnel. The ERP, however, should be easily accessible to authorized personnel and should be easily identifiable during a major event. Steps taken to limit access by unauthorized persons should consider local and state Freedom of Information Act (FOIA) laws. Alternatively, you can opt to make your ERP general in nature so that everyone can use it and not include specific information about system vulnerabilities. A secure copy of your ERP should be maintained in an off-premises location in the event that your primary copy cannot be accessed.
What is an Emergency?
An emergency is an unplanned event which disrupts or impacts your water system.

What Causes an Emergency?
- Cross-connections
- Mis-communication
- Unspecified Responsibilities
- Equipment Failure
- Safety Violations
- Inadequate Maintenance
- Accidents
- Natural Disasters
- Acts of Vandalism or Terrorism
- Insufficient or Contaminated Source Water

How Can You Minimize the Impact of an Emergency?
Quick, responsible action is necessary during an emergency. Developing and implementing a written emergency plan and procedures, along with having trained personnel, will help your water system achieve this goal. This guide offers information which can be used to create such a plan for your system.

Guidelines to Determine Impact of an Emergency:

LEVEL 1—NORMAL
Trouble that can be handled routinely, including normal operator activity.

LEVEL 2—ALERT (Minor Emergency)
Trouble which can be handled by the system with oversight and guidance from OEHS and/or Rural Water Association. This could be an early sign to indicate that a system or part of a system could be lost.

LEVEL 3—Major Emergency
Problem(s) that are somewhat beyond the capability of system personnel and association capabilities. May require a declaration of emergency in order to authorize shortcut procedures. Would require mobilizing all system personnel who might seek help through activating mutual aid agreements or contacts. This level of emergency leaves no doubt that outside help is required because of a serious threat to the facilities of a system and the public health.

LEVEL 4—PROBLEMS CLEARLY AND IMMEDIATELY BEYOND THE CAPABILITY OF THE UTILITY

Recovery time will exceed one week. Cost will be great and large amounts of mutual aid will be required. A request for a declaration of emergency will be required. This level would normally affect many different services that may be lifelines to a water and/or wastewater system. Natural or man-made disasters at this level will cause both disruption over a large area of service and a severe health risk to the public.
HOMELAND SECURITY ADVISORY SYSTEM

Threat Condition Levels
The Homeland Security Advisory System consists of five Threat Condition Levels, each identified by a brief description and corresponding color. From lowest to highest, they are as follows:

LOW = GREEN
GUARDED = BLUE
ELEVATED = YELLOW
HIGH = ORANGE
SEVERE = RED

The higher the Threat Condition, the greater the risk of a terrorist attack. (Risk includes both the probability and severity of such an event.) The EPA has created a series of suggested preventive measures for water systems to use at each of these levels.
EIGHT COMPONENTS OF EMERGENCY RESPONSE PLANS
(Suggested by the EPA)

1) System Specific Information
 • PWSID Number
 • System Name
 • Physical Address
 • Phone Numbers, etc.

2) Water System Responsibilities
 • Designate an Emergency Response Lead (ERL)
 • Name an alternate ERL
 • ERL’s should be individuals who can be on call 24/7
 • Maintain contact information for ERL’s

3) Communication Procedures
 • Details WHO, WHAT, and WHEN for distributing information
 • Communicates with both internal and external customers
 • Special plans for contacting various contingencies (first responders, hospitals, schools, etc.)

4) Personnel Safety
 • Shelter in place procedures
 • Evacuation of employee procedures
 • Other actions to ensure safety of water system personnel during emergencies

5) Identify Alternate Water Sources
 • List other water utilities or agencies which could be utilized in emergencies

6) Replacement Equipment and Chemical Supplies
 • Sources for replacing equipment damaged as a result of emergency situation
 • Sources of chemical supplies

7) Property Protection
 • Measures taken to protect water system physical facilities

8) Water Sampling/Monitoring
 • Listing of companies and facilities which can provide sampling and monitoring

WHAT SHOULD YOU DO IF…
 • A threat is made against your water system?
 • There is suspicious activity at your facilities?
 • An intrusion or act of vandalism has occurred at your system?

IMMEDIATELY

1) CALL 911
 If your area does not have 911 service, Then contact your local law enforcement agency
2) CALL WV WATCH: 1-866-989-2824
This number will connect you with the WV State Police

3) CALL THE OEHS DISTRICT OFFICE SERVING YOUR AREA
See Phone Numbers below. Ask to speak directly to a district office Representative

OFFICE OF ENVIRONMENTAL HEALTH SERVICES
District Offices/Counties Served

Beckley (District 1) Phone: (304) 256-6666
COUNTIES SERVICED: Fayette, Greenbrier, McDowell, Mercer, Monroe, Nicholas, Raleigh, Summers, Wyoming

St. Albans (District 2) Phone: (304) 722-0611
COUNTIES SERVICED: Boone, Cabell, Calhoun, Clay, Jackson, Kanawha, Lincoln, Logan, Mason, Mingo, Putnam, Roane, Wayne, Wirt

Kearneysville (District 4) Phone: (304) 725-9453
COUNTIES SERVICED: Berkeley, Grant, Hampshire, Hardy, Jefferson, Mineral, Morgan, Pendleton

Wheeling (District 5) Phone: (304) 238-1145
COUNTIES SERVICED: Brooke, Doddridge, Hancock, Marshall, Ohio, Pleasants, Ritchie, Tyler, Wetzel, Wood

Philippi (District 6) Phone: (304) 457-2296
COUNTIES SERVICED: Barbour, Braxton, Gilmer, Harrison, Lewis, Marion, Monongalia, Pocahontas, Preston, Randolph, Taylor, Tucker, Upshur, Webster

Charleston (Central Office) Phone: (304) 558-2981
THREAT AWARENESS

What Is A Threat?
A threat is any event which could result in contamination of your water system or cause a loss of water volume or pressure.

Types of Threats
- Intentional Acts from an EXTERNAL source (Example: Activist groups, Criminals, Cults, Domestic or International Terrorist Groups, Vandals)
- Intentional Acts from an INTERNAL source (Example: Disgruntled present or former employee of a system)
- Natural Disaster (Example: Acts of God or Nature, such as a flood)
- Unintentional Acts/Accidents/Incidents (NON-DELIBERATE acts due to such causes as equipment failure, human error, or other unplanned acts)

How Can A Threat Be Communicated?
- E-Mail (Example: Virus which can damage system)
- Fax
- In-Person (Example: A disgruntled employee threatens to damage a treatment plant)
- Phone (Example: Bomb threat)
- Suspicious openings or evidence of tampering involving structures such as manhole covers, buildings, or other equipment.

How Can I Increase Awareness?
- Encourage customers to communicate with you and your staff as to how they can be involved in protecting their water system.
- Work with the public and other local agencies such as law enforcement or citizens/neighborhood watch groups.
- Watch for suspicious activity involving system facilities, personnel, or vehicles.

Examples of Suspicious Activity
- Unidentified or unmarked vehicles (cars, trucks, etc.) parked or left near waterways or facilities for no apparent reason.
- Unidentified persons photographing or videotaping water system facilities, structures, equipment, dams, etc.
- People atop water tanks or climbing or cutting a utility fence.
- Unknown persons hanging around locks or gates.

IF YOU SUSPECT A THREAT, IMMEDIATELY:

1. CALL 911
 If you do not have 911 in your area, call your local law enforcement agency.

2. CALL WV WATCH
 1-866-989-2824 (WV State Police)

3. CALL THE OEHS DISTRICT OFFICE SERVING YOUR AREA
 Ask to speak directly to a District Office Representative.
MATH

One difficulty in operator certification exams appears to be solving math problems. The 2007 BASIC MATH HANDBOOK was developed to assist operators with the math required to accomplish his or her everyday work and is provided as part of this manual.
1 foot = 12 inches
1 inch = 2.54 centimeters
1 gallon = 8 pints
1 gallon = 8.34 pounds
1 gallon = 3.785 liters
1 liter = 1,000 milliliters
1 cubic foot = 7.48 gallons
1 cfs = 448 gpm
1 gpm = 1,440 gpd
1 MGD = 1.55 cfs
1 psi = 2.31 feet
1 foot = 0.433 psi
\(\pi \) (pi) = 3.14

Fahrenheit \(^\circ F \) = \(1.8 \times ^\circ C \) + 32
Celsius \(^\circ C \) = \(0.56 \times (^\circ F - 32) \)

Circumference \(C, \) ft = \(\pi \) x diameter \(D, \) ft
Area of a rectangle \(A, \) sq ft = (length, ft) x (width, ft)
Area of a circle \(A, \) sq ft = 0.785 x (diameter, ft)\(^2\)
Area of a circle \(A, \) sq ft = \(\pi \) x (radius, ft)\(^2\)
Volume of a rectangle \(V, \) cu ft = (length, ft) x (width, ft) x (height, ft)
Volume of a rectangle \(V, \) gal = (length, ft) x (width, ft) x (height, ft) x 7.48 gal/cu ft
Volume of a cylinder \(V, \) cu ft = 0.785 x (diameter, ft)\(^2\) x (height, ft)
Volume of a cylinder \(V, \) gal = 0.785 x (diameter, ft)\(^2\) x (height, ft) x 7.48 gal/cu ft

Chlorination

Chlorine dose \((\text{mg/L}) = \text{chlorine demand (mg/L)} + \text{chlorine residual (mg/L)} \)

Total chlorine residual \((\text{mg/L}) = \text{free chlorine residual (mg/L)} + \text{combined chlorine residual (mg/L)} \)

Pounds, Dosage & Flow

Dose \((\text{mg/L}) = \frac{\text{Feed (lbs/day)}}{\text{flow (MGD)}} \div (8.34 \text{ lbs/gal}) \)

Flow \((\text{MGD}) = \frac{\text{Feed (lbs/day)}}{\text{dose (mg/L)}} \div (8.34 \text{ lbs/gal}) \)

Feed \((\text{lbs/day}) = \text{dose (mg/L)} \times \text{flow (MGD)} \times (8.34 \text{ lbs/gal}) \)

Feed \((\text{lbs/day}) = \text{dose (mg/L)} \times \text{flow (MGD)} \div (8.34 \text{ lbs/gal}) \div \% \text{ purity (decimal)} \)
FLOW

Flow (Q, gpm) = volume (V, gal) ÷ time (t, min.)
Flow (Q, gps) = velocity (v, fps) x area (A, sq ft) x (7.48 gal/cu ft)
Flow (Q, cfs) = velocity (v, fps) x area (A, sq ft)

DETENTION TIME

Detention time (DT, min) = volume (V, gal) ÷ flow (Q, gpm)

PERCENT

Percent (%) = part ÷ whole x 100
Part = whole x percent ÷ 100

FLUORIDATION

Fluoride Feed Rate (lbs/day) = Dose (mg/L) x Capacity (MGD) x (8.34 lbs/gal) x Available Fluoride Ion (AFI) x chemical purity (decimal)

Fluoride Feed Rate (gpd) = Dose (mg/L) x Capacity (gpd) ÷ 18,000 mg/L

Dose (mg/L) = Fluoride Feed rate (lbs/day) x Available Fluoride Ion (AFI) x chemical purity (decimal) x Capacity (MGD) x (8.34 lbs/gal)

Dose (mg/L) = Solution fed (gal) x 18,000 mg/L ÷ Capacity (gpd)

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Formula</th>
<th>Available Fluoride Ion (AFI) Concentration</th>
<th>Chemical Purity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium Fluoride</td>
<td>NaF</td>
<td>0.453</td>
<td>98%</td>
</tr>
<tr>
<td>Sodium Fluorosilicate</td>
<td>Na₂SiF₆</td>
<td>0.607</td>
<td>98%</td>
</tr>
<tr>
<td>Fluorosilic Acid</td>
<td>H₂SiF₆</td>
<td>0.792</td>
<td>23%</td>
</tr>
</tbody>
</table>

Potassium Permanganate dose (mg/L) = 1(Iron concentration mg/L) + 2(Manganese concentration mg/L)

Alkalinity = mL of H₂SO₄ x 1,000 ÷ mL of sample

Hardness = mL of EDTA x 1,000 ÷ mL of sample
WATER OPERATOR EXAM FORMULA SHEET Rev. 6/2008

CHEMICAL DOSES

Chemical Feed Setting (mL/min) = \(\frac{(\text{Flow, MDG})(\text{Alum Dose, mg/L})(3.785L/gal)(1,000,000 \text{ gal/MG})}{(\text{Liquid Alum, mg/mL})(24 \text{ hr/day})(60 \text{ min/hr})} \)

Calibration of a Dry Chemical Feeder (lbs/day) = \(\frac{\text{Chemical Applied, lbs}}{\text{Length of Application, day}} \)

Calibration of Solution

Chemical Feeder (lbs/day) = \(\frac{(\text{Chem Conc, mg/L})(\text{Vol pumped, mL})(1,440 \text{ min/day})}{(\text{Time pumped, min})(1,000 \text{ mL/L})(1,000 \text{ mg/g})(454 \text{ g/lb})} \)

FILTRATION

Filtration Rate (gpm/sq ft) = \(\frac{\text{Flow, gpm}}{\text{Surface area, sq ft}} \)

Unit Filter Rate Volume (UFRV) = \(\frac{(\text{Filtration Rate, gpm/sq ft})(\text{Filter Run, hr})(60 \text{ min/hr})}{(\text{Time pumped, min})(1,000 \text{ mL/L})(1,000 \text{ mg/g})(454 \text{ g/lb})} \)

Backwash Water, gal = \(\frac{(\text{Backwash Flow, gpm})(\text{Backwash Time, min})}{\text{(Water Filtered, gal)}} \)

Backwash, % = \(\frac{(\text{Backwash Water, gal})(100\%)}{\text{(Water Filtered, gal)}} \)

CORROSION CONTROL

\[\text{pH}_a = A + B + \log(Ca^{2+}) + \log(\text{Alk}) \]

Langlier Index = \(\text{pH} - \text{pH}_a \)

COAGULATION AND FLOCCULATION

Polymer, lbs = \(\frac{(\text{Polymer Solution, gal})(8.34 \text{ lbs/gal})(\text{Polymer, \%})(\text{Sp Gr})}{100\%} \)

DISINFECTION

Hypochlorite Flow, gpd = \(\frac{(\text{Container area, sq ft})(\text{Drop, ft})(7.48 \text{ gal,cu ft})(24 \text{ hr/day})}{(\text{Time, hr})} \)

Feed Rate, gal/day = \(\frac{(\text{Feed Rate, lbs /day})(\text{Feed Dose, mg/L})}{\text{Feed Solution, mg/L}} \)

Feed Rate, lbs/day = \(\frac{\text{Feeder Setting, lbs/day}}{24 \text{ hr/day}} \)

CT, mg/L-min = \(\frac{(\text{Vol, gal})(T_{10})(\text{Free Chlorine Residual, mg/L})}{\text{Flow, gpm}} \)

Free Chlorine Residual, mg/L = \(\frac{(\text{CT, mg/L-min})}{T_{10}, \text{ min}} \)
REFERENCE LIST

1. Water Treatment Plant Operation, A Field Study Training Guide, Volume 1, Fifth Edition; California State University, Sacramento.
4. Utility Management, A field study training program, 2nd Edition; California State University, Sacramento.
10. Safe Drinking Water Act and all current Rules and Regulations from www.epa.gov/safewater
11. www.wvdhhr.org/oehs/eed
12. www.wvetc.org
13. www.wvrwa.org
14. www.owp.csus.edu
15. www.psc.state.wv.us
EXAM PREPARATION

The following is some information about the certification exam to hopefully make you a little less apprehensive. Use common sense when studying for the exam. Exams are not written by a disgruntled person trying to fail everyone, nor are 100% pass rates the goal. The Drinking Water Exam Review Committee (DWERC), which includes state regulators (OEHS Certification and Training Program staff), educators (WV Environmental Training Center and WV Rural Water Association representatives) and current Class IV water operators, develop all PWS operator certification exams to increase training and testing relevance and comply with EPA Operator Certification Program requirements. The DWERC continues to work towards multiple complete versions of each classification exam with references, organized by content areas to ensure all exam questions are based on what operators actually “need to know” to adequately prepare for and perform job duties and responsibilities associated with the treatment and distribution of drinking water. As new federal and state regulations and drinking water treatment technology advances are made, the DWERC will continue to review and revise all required PWS operator exams to ensure they are valid and relevant. For a Class II water operator, the DWERC has determined the following Class II Water Operator Certification Exam Content Areas (as of June 2008). The percentages refer to the approximate portion of exam questions for each section.

1. **Regulations (20%)**
 State and federal, records and reports, sanitary survey

2. **Source water (2%)**
 SW, GW, GWUDI, SWAP report, Well construction

3. **Water treatment processes (33%)**
 Coagulation, flocculation, sedimentation, filtration, disinfection, corrosion control, aeration, taste and odor control, fluoridation, chemistry

4. **Plant operation (20%)**
 Covers chemical feeds, lab procedures, daily tasks, MORs, sampling, monitoring, chemistry

5. **Distribution (10%)**
 Main repairs, booster stations, tanks, lines, meters, cross connection, valves, flushing, sampling, chemistry

6. **Maintenance (5%)**
 Intakes, filters, pumps, motors, hydraulics, instrumentation, preventative, planning

7. **Safety and security (5%)**
 Maintain a safe work environment

8. **Public relations (2.5%)**
 CCRs, customer inquiries, field investigations, outreach, perform public relation activities
9. Administration (2.5%)

Mathematics

Also, if a person is familiar with how the exam is conducted, he/she will be more comfortable with the exam process and more likely to pass the exam. This list will help you familiarize yourself with the certification exam.

1. Most exams have 100 questions, with each question worth one point. A score of 70 or above is passing.
2. All questions are multiple-choice. You will receive partial credit on the math problems, so make sure you show all of your work. It could mean the difference between passing and not passing.
3. You will be given 4 hours to complete the exam. This has proven to be plenty of time for people to complete the exam.
4. The exam is a closed-book exam. All equations and conversions needed for math problems will be given on a formula sheet with each exam so there is no need to memorize equations.
5. Overall, the percentage of people passing a given exam is good.
6. All applicants must complete and submit form EW-102C at least thirty (30) days prior to the requested exam date.
7. If you have any special learning needs, please notify the Certification and Training section so appropriate accommodations can be arranged in advance.
8. OEHS is required to notify applicants before the exam date with a confirmation letter by mail. Bring this confirmation letter, a photo ID, a pencil, and a calculator to the exam with you.
9. Exam scores are valid for 2 years, so you must fulfill the experience requirement to upgrade to a Class II within that timeframe or reapply and retake the exam.
10. If you do not make a passing grade on the exam, you must wait at least 60 days before reapplying for reexamination.
11. Once certified, a Class II operator must acquire at least 24 hours of continuing education credits (CEHs) every two years to maintain certification.
12. CEHs are training classes pre-approved by the OEHS based on their relevancy to the drinking water industry. Operators must provide copies of class certificates with their renewal application (EW-102D).
HERE’S A QUICK SUMMARY OF TEST-TAKING STRATEGIES
YOU NEED TO KNOW!

❖ Be on time and try to relax.
❖ Pace yourself, so you have time to answer all of the questions.
❖ Read the instructions carefully and look at both side of each page.
❖ Consider doing easier questions first and coming back to harder, more time-consuming questions such as those with calculations.
❖ Read each question carefully.
❖ Read all of the answers so that you can pick the best one.
❖ There’s no penalty for wrong answers, so answer every question, even if you have to guess.
❖ If you have to guess, improve your odds by eliminating obviously wrong answers.
❖ Take a break if you need one.
❖ Recheck your answers after you’ve finished the exam.
❖ Watch out for distracting information in the questions and answers. Some of the information you’re given may be irrelevant or may even lead you to the wrong answer. Make it a point to determine what the question is really asking.
❖ Beware of extreme modifiers (like “all” or “never”). There are exceptions to most rules, so be careful about any statement that expresses an absolute truth.
❖ Some answers may be partially correct, so be sure that you read every answer and then pick the best one.
❖ Make a drawing or sketch if it will help you understand the question.
❖ Be aware that another question may contain the answer to a question you are not sure of.
❖ Underline key points in a question such as variables in a math problem.
PRACTICE TEST

1. Aesthetic qualities of drinking water include
 A. Taste
 B. Odor
 C. Color
 D. All of the Above

2. Disease causing organisms are called
 A. Bacteria
 B. Protozoa
 C. Pathogens
 D. Amoeba

3. The process in which disease causing organisms are removed from drinking water is called
 A. Sterilization
 B. Disinfection
 C. Filtration
 D. Sedimentation

4. Convert 75 degrees F to degrees C.
 A. 9.7
 B. 21.4
 C. 38.1
 D. 43.0

 \[
 C = 0.56 \times (F-32) = 0.56 \times (75-32) = 0.56 \times 42 =
 \]

5. Express 65% as a decimal value.
 A. 0.0065
 B. 0.065
 C. 0.65
 D. 6.5

 \[
 65\% \div 100 = 0.65
 \]

6. A tank has a holding capacity of 425 cubic feet of water. How many gallons of water is this?
 A. 57
 B. 3179
 C. 3544
 D. 26,512

 \[
 425 \text{ ft}^3 \times 7.48 \text{ gal/ft}^3 = 3179 \text{ gal}
 \]

7. Convert 1,041 GPM to MGD.
 A. 0.22
 B. 0.88
 C. 1.5
 D. 2.2
1041 gpm x (1 MGD/694.4 gpm) = 1.499 MGD

8. A storage tank is 40 ft by 50 ft by 12 ft. How many gallons of water does it contain?
 A. 118,555
 B. 96,277
 C. 27,869
 D. 179,520

 Vol = L x W x H x 7.48 gal/ft³ = 40 ft x 50 ft x 12 ft x 7.48 gal/ft³ = 179,520 gal

9. The daily feed rate, in pounds, of potassium permanganate over 8 days was: 21, 24, 25.9, 16.8, 17.3, 19.45, 13.75, and 22.87. What was the average daily feed rate?
 A. 137
 B. 20
 C. 15
 D. 23

 Average = (21 + 24 + 25.9 + 16.8 + 17.3 + 19.45 + 13.75 + 22.87)/8 = 20.13

10. How many gallons of water does a pipe 15 inches in diameter and 2500 feet long contain?
 A. 116,450
 B. 11,975
 C. 22,937
 D. 121,000

 15 in x (1 ft/12 in) = 1.25 ft

 Vol = 0.785 x D² x L x 7.48 gal/ft³ = 0.785 x (1.25 ft)² x 2500 ft 7.48 gal/ft³ = 22,936.72 gal

11. A pump has a pumping rate of 25 gpm. What is the daily discharge in MGD?
 A. 0.036
 B. 0.12
 C. 0.29
 D. 1.2

 25 gpm x (1 MGD/694.4 gpm) = 0.036

12. How many pounds of available chlorine are in 350 pounds of 70% HTH?
 A. 320
 B. 220
 C. 245
 D. 350

 350 x 0.70 = 245

13. The chlorine residual is required to be 1.4 mg/L and the demand is 0.6 mg/L. What is the dosage in mg/L?
 A. 0.7
Dosage = Demand + Residual = 0.6 mg/L + 1.4 mg/L = 2.0 mg/L

14. Using the mg/L chlorine dosage found in problem above calculate how many pounds of chlorine would be needed to treat 5,800,000 gallons of water.
 A. 106
 B. 15
 C. 48
 D. 97

 5,800,000 gal \times (1MG/1,000,000 gal) = 5.8 MG

 Lbs = dose \times flow \times 8.34 \text{ lbs/gal} = 2.0 \text{ mg/L} \times 5.8 \text{ MG} \times 8.34 \text{ mg/L} = 96.744 \text{ lbs}

15. Determine the pounds per day of chlorine needed to treat a flow of 3 MGD with a chlorine dose of 4 mg/L.
 A. 100
 B. 89.8
 C. 10
 D. 1.4

 Lbs = dose \times flow \times 8.34 \text{ lbs/gal} = 4 \text{ mg/L} \times 3 \text{ MGD} \times 8.34 \text{ mg/L} = 100.08 \text{ lbs}

16. The chemical symbol for calcium is
 A. C
 B. Ca
 C. Cl
 D. Cm

17. What form of matter is a chemical combination of two or more basic substances?
 A. element
 B. mixture
 C. solution
 D. compound

18. The chemical formula for slaked lime is
 A. Ca(OH)$_2$
 B. CaO
 C. NaCO$_3$
 D. Ca(OCl)$_2$

19. The chemical name for NaOH is
 A. sodium hydroxide
 B. sodium hypochlorite
 C. nitrous hydroxide
 D. ammonia hydroxide
20. The common name for Al₂(OH)₃ is
 A. filter alum
 B. limestone
 C. caustic soda
 D. salt

21. Organic compounds always contain which element?
 A. C
 B. H
 C. O
 D. N

22. If a sample of water has a pH of 4.7, it is
 A. acidic
 B. basic
 C. neutral
 D. alkaline

23. Which of these may be added to lower the pH of a sample of water?
 A. HO
 B. CaCO
 C. NaOH
 D. H₂SO₄

24. Water with a pH of 4.5
 A. can be corrosive and damage water lines
 B. can add needed alkalinity to the system
 C. can prevent corrosion in water lines
 D. b and c

25. Temperature has no effect on chemical reactions.
 A. true
 B. false

26. Cold winter temperatures may require the chlorine dosage to be lowered compared to summer usage.
 A. true
 B. false

27. Cold water is denser than warm water thereby allowing particles to settle out more quickly.
 A. true
 B. false

28. Turbid water may cause disinfection to be less effective.
 A. true
 B. false

29. Compounds that come mainly from plant or animal sources
 A. are called organics and always contain the element carbon
B. are called inorganics and always contain the element carbon
C. are called organics and always contain the element nitrogen
D. are called inorganics and always contain the element nitrogen

30. The minimum free chlorine residual in the distribution system is
 A. 0 mg/L
 B. 0.2 mg/L
 C. 0.5 mg/L
 D. 0.7 mg/L

31. A sample portion of water that is nearly identical in every way to the larger sample is said to be
 A. asymmetrical
 B. proportional
 C. consistent
 D. representative

32. A collection of individual samples collected at regular intervals over a specified period of time.
 A. proportional
 B. representative
 C. grab
 D. composite

33. When collecting a water sample, which of the following is acceptable?
 A. sampling from drinking fountains
 B. sampling from a hose
 C. sampling from a faucet without an aerator
 D. sampling from a leaky faucet

34. Ideal sampling locations:
 A. are direct connections, such as a fire hydrant
 B. are short direct connections
 C. infrequently used water sources
 D. are faucets that swivel for easy access and filling

35. Records of bacterial analyses must be kept:
 A. until that supply of water has been safely used
 B. for no more than 3 years
 C. for no less than 3 years
 D. for no less than 5 years

36. A single sample of water collected without regard to a specific time.
 A. composite sample
 B. grab sample
 C. flow proportional
 D. a sample always has a specific time to be collected
37. When a collection bottle is sent from the lab and found to have a powdery substance in the bottom, what should be done?
 A. dump it out and rinse the bottle
 B. call the lab immediately
 C. leave it in there
 D. alert the EPA

38. Which if the following records must be kept on the premises?
 A. chemical analysis
 B. public notices
 C. sanitary surveys
 D. all of the above

39. The most widely used and proven disinfection method for drinking water is:
 A. Filtration
 B. Chlorination
 C. Coagulation/Flocculation
 D. Ozonation

40. THM is an acronym for:
 A. Tetrahydramenthol
 B. Total Hydrogenated Mercaptan
 C. Trihalomethane
 D. Trihydromentholate

41. THMs and haloacetic acids are formed by the chlorination of:
 A. acetone
 B. natural organic matter
 C. algae
 D. alum

42. The THM formation potential increases as the:
 A. water temperature decreases
 B. water temperature increases
 C. water pH decreases
 D. organic precursors decrease

43. Pathogens may be defined as:
 A. A broad spectrum of disease causing microorganisms
 B. Coliform
 C. Waterborne diseases
 D. A family of toxic chemicals
1. D
2. C
3. B
4. B Answer: \[C = 0.56 \times (F-32) = 0.56 \times (75-32) = 0.56 \times 43 = 24.08 \]
5. C Answer: \[65\% \div 100 = 0.65 \]
6. B Answer: \[425 \text{ ft}^3 \times 7.48 \text{ gal/ft}^3 = 3179 \text{ gal} \]
7. C Answer: \[1041 \text{ gpm} \times (1 \text{ MGD}/694.4 \text{ gpm}) = 1.499 \text{ MGD} \]
8. D
Answer: \[\text{Vol} = L \times W \times H \times 7.48 \text{ gal/ft}^3 \]
\[= 40 \text{ ft} \times 50 \text{ ft} \times 12 \text{ ft} \times 7.48 \text{ gal/ft}^3 = 179,520 \text{ gal} \]
9. B
Answer: \[\text{Aver} = (21 + 24 + 25.9 + 16.8 + 17.3 + 19.45 + 13.75 + 22.87)/8 = 20.13 \]
10. C
Answer: 15 in \times (1 \text{ ft}/12 \text{ in}) = 1.25 \text{ ft} \]
\[\text{Vol} = 0.785 \times D^2 \times L \times 7.48 \text{ gal/ft}^3 \]
\[= 0.785 \times (1.25 \text{ ft})^2 \times 2500 \text{ ft} \times 7.48 \text{ gal/ft}^3 = 22,936.72 \text{ gal} \]
11. A Answer: \[25 \text{ gpm} \times (1 \text{ MGD}/694.4 \text{ gpm}) = 0.036 \]
12. C Answer: \[350 \times 0.70 = 245 \]
13. D Answer: Dosage = Demand + Residual = 0.6 mg/L + 1.4 mg/L = 2.0 mg/L
14. D
Answer: \[5,800,000 \text{ gal} \times (1 \text{MG}/1,000,000 \text{ gal}) = 5.8 \text{ MG} \]
\[\text{Lbs} = \text{dose} \times \text{flow} \times 8.34 \text{ lbs/gal} = 2.0 \text{ mg/L} \times 5.8 \text{ MG} \times 8.34 \text{ mg/L} = 96.744 \text{ lbs} \]
15. A
Answer: \[\text{Lbs} = \text{dose} \times \text{flow} \times 8.34 \text{ lbs/gal} = 4 \text{ mg/L} \times 3 \text{ MGD} \times 8.34 \text{ mg/L} = 100.08 \text{ lbs} \]
16. B
17. D
18. A
19. A
20. A
21. A
22. A
23. D
24. A
25. B
26. A
27. B
28. A
29. A
30. B
31. D
32. D
33. C
34. B
35. D
36. B
37. C
38. D
39. B
40. C
41. B
42. B
43. A
GLOSSARY

ABSORPTION - Taking in or soaking up of one substance into the body of another by molecular or chemical action (as tree roots absorb dissolved nutrients in the soil).

ACCOUNTABILITY - When a manager gives power/responsibility to an employee, the employee ensures that the manager is informed of results or events.

ACCURACY - How closely an instrument measures the true of actual value of the process variable being measured or sensed.

ACIDIC - The condition of water or soil which contains a sufficient amount of acid substances to lower the pH below 7.0.

ACTION LEVEL - The level of lead or copper which, if exceeded in over 10% of the homes tested, triggers treatment or other requirements that a water system must follow.

ACTION PLANS - Specific plans designed to be used during the response to a threat or incident. Action plans should be easy to use and contain forms, flow charts, and simple instructions to support staff in the field or decision officials during management of a crisis.

ACTIVATED CARBON - Adsorptive particles or granules of carbon usually obtained by heating carbon (such as wood). These particles or granules have a high capacity to selectively remove certain trace and soluble materials from water.

ACUTE - Effects of an exposure which causes severe symptoms to occur quickly.

ACUTE CONTAMINANT - A harmful substance that has a rapid effect on humans and/or animals.

ACUTE HEALTH EFFECT - An immediate (i.e., within hours or days) adverse health effect that may result from exposure to certain drinking water contaminants (e.g., pathogens).

ADSORPTION - The collection of a gas, liquid, or dissolved substance on the surface or interface zone of another material.

AERATION - The process of adding air to water. Air can be added to water by either passing air through water or passing water through air.

AEROBIC - A condition in which “free” (atmospheric) or dissolved oxygen is present in the water.

AESTHETIC - Attractive or appealing.

AESTHETIC QUALITIES - The taste, odor and appearance of drinking water.
AIR BINDING - A situation where air enters the filter media. Air is harmful to both the filtration and backwash processes. Air can prevent the passage of water during the filtration process and can cause the loss of altar media during the backwash process.

AIR GAP - An open vertical drop of vertical empty space that separates a drinking (potable) water supply to be protected from another water system in a water treatment plant or other location. This open gap prevents the contamination of drinking water by backsiphonage or backflow because there is no way raw water or any other water can reach the drinking water.

AIR STRIPPING - A treatment process used to remove dissolved gases and volatile substances from water. Large volumes of air are bubbled through the water being treated to removed (strip out) the dissolved gases and volatile substances.

ALGAE - Microscopic plants which contain chlorophyll and live floating or suspended in water. They also may be attached to structures, rocks or other submerged surfaces. Excess algal growths can impart tastes and odors to potable water. Algae produce oxygen during sunlight hours and use oxygen during the night hours. Their biological activities appreciable affect the pH and dissolved oxygen of the water.

ALGAL BLOOM - Sudden, massive growths of microscopic and macroscopic plant life, such as green or blue-green algae, which develop in lakes and reservoirs.

ALKALINE - The condition of water or soil which contains a sufficient amount of alkali substances to raise the pH about 7.0

ALKALINITY - The capacity of water to neutralize acids. This capacity is caused by the water’s content of carbonate, bicarbonate, hydroxide, and occasionally borate, silicate, and phosphate. Alkalinity is expressed in milligrams per liter of equivalent calcium carbonate. Alkalinity is not the same as pH because water does not have to be strangely basic (high pH) to have a high alkalinity. Alkalinity is a measure of how much acid can be added to a liquid without causing a great change in pH.

ALTERNATING CURRENT - An electric current that reverses its direction (positive/negative values) at regular intervals.

ALTITUDE VALVE - A valve that automatically shuts off the flow into an elevated tank when the water level in the tank reaches a predetermined level. The valve automatically opens when the pressure in the distribution system drops below the pressure in the tank.

AMBIENT TEMPERATURE - Temperature of the surrounding air (or other medium). For example, temperature of the room where a gas chlorinator is installed.

AMPERE - The unit used to measure current strength. The current produced by electromotive force of one volt acting through a resistance of one ohm.

ANAEROBIC - A condition in which “free” (atmospheric) or dissolved oxygen is NOT present in water.
ANALYZER - A device which conducts periodic or continuous measurement of some factor such as chlorine, fluoride turbidity. Analyzers operate by any of several methods including photocells, conductivity or complex instrumentation.

ANNULAR SPACE - A ring-shaped space located between two circular objects, such as two pipes.

ANODE - The positive pole or electrode of an electrolytic system, such as battery. The anode attracts negatively charged particles or ions.

ANTHRACITE - A dense, shiny coal that has high carbon content and little volatile matter and is often used on top of sand water treatment filters for iron removal.

AQUIFER - A natural underground layer of porous, water-bearing materials (sand, gravel) usually capable of yielding a large amount or supply of water.

ARSENIC RULE - U.S. Environmental Protection Agency has issued a rule that applies to all community water systems and non-transient, non-community water systems, which sets the maximum contaminant level of arsenic at 10 milligrams per liter.

ARTESIAN - Pertaining to groundwater, a well, or underground basin where the water is under a pressure greater than atmospheric and will rise above the level of its upper confining surface if given an opportunity to do so.

AS-BUILT MAPS - Maps or drawings depicting the actual installation of pipes and equipment. Also called record drawings. As-builts often differ from original plans.

AUDIT, WATER - A thorough examination of the accuracy of water agency records or accounts (volumes of water) and system control equipment. Water managers can use audits to determine their water distribution system efficiency. The overall goal is to identify and verify water and revenue losses in a water system.

AVAILABLE EXPANSION - The vertical distance from the sand surface to the underside of a trough in a sand filter. This distance is also called FREEBOARD.

AVAILABLE SUPPLY - The maximum amount of reliable water supply, including surface water, groundwater, and purchases under secure contracts.

AVERAGE-DAY DEMAND - A water systems average daily use based on total annual water production (total annual gallons or cubic feet divided by 365); multiple years can be used to account for yearly variations.

AVERAGE DEMAND - The total demand for water during a period of time divided by the number of days in that time period. This is also called the AVERAGE DAILY DEMAND.

BACK PRESSURE - A pressure that can cause water to backflow into the water supply when a user’s water system is at a higher pressure than the public water system.
BACKFILL - To refill an excavated area with removed earth; or the material itself that is used to refill an excavated area.

BACKFLOW - A reverse flow condition, created by a difference in water pressures, which causes water to flow back into the distribution pipes of a potable water supply from any source or sources other than an intended source. Also see BACKSIPHONAGE.

BACKFLOW PREVENTION - The best defense for backflow is a proactive backflow prevention program requiring backflow preventers in areas where backflow can occur.

BACKFLOW PREVENTION ASSEMBLY INSTALLER/TESTER (BPAIT) - An individual who meets all the requirements of 64CSR25 and is certified to inspect and test backflow prevention assemblies or methods.

BACKSIPHONAGE - A form of backflow caused by a negative or below atmospheric pressure within a water system. Also see BACKFLOW.

BACKWASH - The up flow or counter-current flow of water through a filter or ion-exchange medium, lifting the mineral bed and flushing away to the drain the particles of foreign matter that have been filtered from the water supply during the filter cycle.

BACKWASHING - The process of reversing the flow of water back through the filter media to remove the entrapped solids.

BACTERIA - Bacteria are living organisms, microscopic in size, which usually consist of a single cell. Most bacteria use organic matter for their food and produce waste products as a result of their life processes.

BAFFLE - A flat board or plate, deflector, guide or similar device constructed or placed in flowing water or slurry systems to cause more uniform flow velocities, to absorb energy, and to divert, guide, or agitate liquids (water, chemical solution, slurry).

BASE - Any substance which contains hydroxyl (OH) groups and furnishes hydroxide ions in solution; a molecular or ionic substance capable of combining with a proton to form a new substance; a substance that provides a pair of electrons for a covalent bond with an acid; a solution with a pH of greater than 7.

BATCH PROCESS - A treatment process in which a tank or reactor is filled, the water is treated or a chemical solution is prepared, and the tank is emptied. The tank may then be filled and the process repeated.

BEST AVAILABLE TECHNOLOGY (BAT) - The water treatment(s) that EPA certifies to be the most effective for removing a contaminant. The best technology treatment techniques, or other means which the Administrator finds, after examination for efficacy under field conditions and not solely under laboratory conditions, are available (taking cost into consideration). For the purposes of setting MCLs for synthetic organic chemicals, any BAT must be at least as effective as granular activated carbon.
BEST MANAGEMENT PRACTICES (BMPs) - Structural, nonstructural and managerial techniques that are recognized to be the most effective and practical means to control nonpoint source pollutants yet are compatible with the productive use of the resource to which they are applied. BMPs are used in both urban and agricultural areas.

BIOLOGICAL GROWTH - The activity and growth of any and all living organisms.

BLOWOFF - A controlled outlet on a pipeline, tank, or conduit which is used to discharge water or accumulations of material carried by the water.

BOIL ORDER (ADVISORY) - A directive issued to water system users to boil their water because of known or suspected bacteriological contamination.

BREAKPOINT CHLORINATION - Addition of chlorine to water until the chlorine demand has been satisfied. At this point, further addition of chlorine will result in a free residual chlorine that is directly proportional to the amount of chlorine added beyond the breakpoint.

BREAKTHROUGH - A crack or break in a filter bed allowing the passage of floc or particulate matter through a filter. This will cause an increase in filter effluent turbidity. A breakthrough can occur (1) when a filter is first placed in service, (2) when the effluent valve suddenly opens or closes, and (3) during periods of excessive head loss through the filter (including when the filter is exposed to negative heads).

BUFFER - A solution or liquid whose chemical makeup neutralize acids or bases. This is a measure of the capacity of water for offering a resistance to changes in pH.

C FACTOR - A factor or value used to indicate the smoothness of the interior of a pipe. The higher the C Factor, the smoother the pipe, the greater the carrying capacity, and the smaller the friction or energy losses form water flowing in the pipe. To calculate the C Factor, measure the flow, pipe diameter, distance between two pressure gages, and the friction or energy loss of the water between the gages.

CALCIUM CARBONATE (CaCO₃) EQUIVALENT - An expression of the concentration of specified constituents in water in terms of their equivalent value to calcium carbonate. For example, the hardness in water which is caused by calcium, magnesium and other ions is usually described as calcium carbonate equivalent.

CALIBRATION - A procedure which checks or adjusts an instrument’s accuracy by comparison with a standard or reference.

CAPACITY DEVELOPMENT - The process of determining the managerial, financial and technical capacities of a water system.

CARCINOGEN - Any substance which tends to produce cancer in an organism.
CATHODE - The negative pole or electrode of an electrolytic cell or system. The cathode attracts positively charged particles or ions (cations).

CATHODIC PROTECTION - An electrical system for prevention of rust, corrosion, and pitting of metal surfaces which are in contact with water or soil. A low-voltage current is made to flow through a liquid (water) or a soil in contact with the metal in such a manner that the external electromotive force renders the metal structure cathodic. This concentrates corrosion on auxiliary anodic parts which are deliberately allowed to corrode instead of letting the structure corrode.

CAVITATION - The formation and collapse of a gas pocket or bubble on the blade of an impeller or the gate of a valve. The collapse of this gas pocket or bubble drives water into the impeller of gate with a terrific force that can cause pitting on the impeller or gate surface. Cavitation is accompanied by loud noises that sound like someone is pounding on the impeller or gate with a hammer.

CENTRIFUGAL PUMP - A pump consisting of an impeller fixed on a rotating shaft that is enclosed in a casing, and having an inlet and discharge connection. As the rotating impeller whirls the water around, centrifugal force builds up enough pressure to force the water through the discharge outlet.

CERTIFIED OPERATOR – An individual holding a valid West Virginia public water system certification in accordance with Section 6 of 64CSR4.

CHAIN OF COMMAND - A clear and definitive structure of authority.

CHAIN OF CUSTODY - A written record that shows who handled a sample over what periods of time from the beginning to the end of the sampling and testing process.

CHECK VALVE - A special valve with a hinged disc or flap that opens in the direction of normal flow and is forced shut when flows attempt to go in the reverse or opposite direction of normal flow.

CHIEF OPERATOR - The certified operator whom the owner designates who is responsible for managing the daily operational activities of an entire public water system or a water treatment facility, or a distribution system in a manner that ensures meeting state and federal safe drinking water rules and regulations.

CHLORAMINES - Compounds formed by the reaction of hypochlorous acid (or aqueous chlorine) with ammonia.

CHLORINATION - The application of chlorine to water, generally for the purpose of disinfection, but frequently for accomplishing other biological or chemical results (aiding coagulation and controlling tastes and odors).

CHLORINATOR - A metering device which is used to add chlorine to water.

CHLORINE DEMAND - The difference between the amount of chlorine added to water and the amount of residual chlorine remaining after a given contact time. Chlorine demand may change with dosage, time, temperature, ph, and nature and amount of the impurities in the water.
CHRONIC - Effects of an exposure which causes symptoms to continue for a long time.

CHRONIC HEALTH EFFECT - The possible result of exposure over many years to a drinking water contaminant at levels above its Maximum Contaminant Level.

CIRCUIT BREAKER - A safety device in an electrical circuit that automatically shuts off the circuit when it becomes overloaded. The device can be manually reset.

CHRONIC - Effects of an exposure which causes symptoms to continue for a long time.

CIRCLE OF INFLUENCE - The circular outer edge of a depression produced in the water table by the pumping of water from a well. Also see CONE OF INFLUENCE AND CONE OF DEPRESSION.

CIRCUIT - A path through which an electrical current can flow when the path is complete.

CLARIFICATION - The removal of small amounts (usually less than 0.2%) of fine particulate solids from liquids (such as drinking water) by methods such as gravity sedimentation, centrifugal sedimentation, filtration, and magnetic separation.

CLARIFIER - A large circular or rectangular tank or basin in which water is held for a period of time, during which the heavier suspended solids settle to the bottom. Clarifiers are also called SETTLING BASINS and SEDIMENTATION BASINS.

CLEAR WELL - A reservoir for the storage of filtered water of sufficient capacity to prevent the need to vary the filtration rate with variations in demand. Also used to provide chlorine contact time for disinfection.

COAGULANT AID - Any chemical or substance used to assist or modify coagulation.

COAGULANTS - Chemicals that cause very fine particles to clump together into larger particles. This makes it easier to separate the solids from the water by settling, skimming, draining or filtering.

COAGULATION - The clumping together of very fine particles into larger particles caused by the used of chemicals (coagulants). The chemicals neutralize the electrical charges of the fine particles and cause destabilization of the particles. This clumping together makes it easier to separate the solids from the water by settling, skimming, draining, or filtering.

COHESION - Molecular attraction which holds two particles together.

COLIFORM - A group of bacteria found in the intestines of warm-blooded animals (including humans) and also in plants, soil, air and water. Fecal coliforms are a specific class of bacteria which only inhibit the intestines of warm-blooded animals. The presence of coliform bacteria is an indication that the water is polluted and may contain pathogenic organisms.

COLLOIDS - Very small, finely divided solids (particles that do not dissolve) that remain dispersed in a liquid for a long time due to their small size and electrical charge. When most of
the particles in water have a negative electrical charge, they tend to repel each other. This repulsion prevents the particles from clumping together, becoming heavier, and settling out.

COLORIMETRIC MEASUREMENT - A means of measuring unknown chemical concentrations in water by measuring a sample’s color intensity. The specific color of the sample, developed by addition of chemical reagents, is measured with a photoelectric colorimeter or is compared with “color standards” using, or corresponding with, known concentrations of the chemical.

COMBINED AVAILABLE RESIDUAL CHLORINE - That portion of the total residual chlorine remaining in water, sewage or industrial waste at the end of a specified contact period, which will react chemically and biologically as chloramines or organic chloramines.

COMBINED DISTRIBUTION SYSTEM - The interconnected distribution system consisting of the distribution systems of wholesale systems and of the consecutive systems that receive finished water from those wholesale system(s).

COMMUNITY WATER SYSTEM (CWS) - A public water system which serves at least 15 service connections used by year round residents or regularly serves at least 25 persons year-round residents. Also see non-community water system, transient water system and non-transient non-community water system.

COMPLETE TREATMENT - A method of treating water which consists of the addition of coagulant chemicals, flash mixing, coagulation-flocculation, sedimentation and filtration. Also called CONVENTIONAL FILTRATION.

COMPLIANCE - The act of meeting all state and federal drinking water regulations.

COMPOSITE - A composite sample is a collection of individual samples obtained at regular intervals, usually every one of two hours during a 24-hour time span. Each individual sample is combined with the others in proportion to the rate of flow when the sample was collected. The resulting mixture (composite sample) forms a representative sample and is analyzed to determine the average conditions during the sampling period.

COMPOUND - A substance composed of two or more elements whose composition is constant. For example, table salt (sodium chloride -NaCl) is a compound.

COMPOUND METERS - These meters are used where there is a need to measure both high and low flows, like in a hotel, school, or a commercial account where both domestic use and production use need to be measured by one meter. They are typically available in sizes from 2” through 6”.

CONDENSATION - The process of water vapor in the air turning into liquid water.

CONDUCTANCE - A measure of the conducting power of a solution equal to the reciprocal of the resistance. The resistance is expressed in ohms.

CONDUCTIVITY - The ability of a material to carry current or heat.
CONE OF DEPRESSION - The depression, roughly conical in shape, produced in the water table by pumping of water from a well. Also see CIRCLE OF INFLUENCE and CONE OF DEPRESSION.

CONFINED AQUIFER - The saturated formation between low permeability layers that restrict movement of water vertically into or out of the saturated formation. Water is confined under pressure similar to water in a pipeline. In some areas confined aquifers produce water without pumps (flowing artesian well).

CONFINED SPACE - A space defined by the concurrent existence of the following conditions:
 1. Existing ventilation is insufficient to remove dangerous air contamination and/or oxygen deficiency which may exist or develop, and
 2. Ready access or egress (getting out) for the removal of a suddenly disabled employee (operator) is difficult due to the location and/or size of the opening(s).

CONFIRMED - A stage in the threat evaluation process in which there is definitive evidence and information to establish that an incident or major event has occurred.

CONSECUTIVE SYSTEM - Includes all systems that buy or otherwise receive some or all of their finished water from another public water system on a regular basis.

CONSUMER CONFIDENCE REPORT (CCR) - All community water systems are required to deliver to their customers an annual report. This report must contain information on the quality of the water delivered by the system and characterize the risks, if any, from exposure to contaminants detected in the drinking water in an accurate and understandable manner. Systems shall deliver their reports no later than July 1 annually. Each report must contain data collected during, or prior to, the previous calendar year. A community water system that sells water to another community water system shall deliver the applicable information noted above to the buyer system no later than April 1 annually.

CONTAMINANT - Anything found in water (including microorganisms, minerals, chemicals, radionuclides, etc.) which may be harmful to human health.

CONTAMINATION - The introduction into water of microorganisms, chemicals, toxic substances, wastes, or wastewater in concentration that makes the water unfit for its next intended use.

CONTINUOUS SAMPLE - A flow of water from a particular place in a plant to the location where samples are collected for testing. This continuous stream may be used to obtain grab or composite samples. Frequently, several taps (faucets) will flow continuously in the laboratory to provide test samples from various places in a water treatment plant.

CONVENTIONAL FILTRATION - A method of treating water which consists of the addition of coagulant chemicals, flash mixing, coagulation-flocculation, sedimentation and filtration. Also called COMPLETE TREATMENT. Also see DIRECT FILTRATION and IN-LINE FILTRATION.
CORPORATION STOP - A water service shutoff valve located at a street water main. This valve cannot be operated from the ground surface because it is buried and there is not valve box. Also called a CORPORATION COCK.

CORROSION - The gradual decomposition or destruction of a material by chemical reaction. Corrosion may be caused by (1) stray current electrolysis, (2) galvanic corrosion caused by dissimilar metals, or (3) differential-concentration cells. Corrosion starts at the surface of a material and moves inward.

CORROSION INHIBITORS - Substances that slow the rate of corrosion.

CORROSIVE - Having the capability or tendency to cause corrosion

CORROSI VITY - An indication of the corrosiveness of water. The corrosiveness of water is described by the water’s pH, alkalinity, hardness, temperature, total dissolved solids, dissolved oxygen concentration, and the Langelier Index.

COUPON - A steel specimen inserted into water to measure the corrosiveness of water. The rate of corrosion is measured as the loss of weight of the coupon (in milligrams) per surface area (in square decimeters) exposed to the water per day.

CREDIBLE - A stage in the threat evaluation process in which there is information to corroborate a threat.

CROSS-CONNECTION - A connection between a drinking (potable) water system and an unapproved water supply. For example, if you have a pump moving nonpotable water and hooking into the drinking water system to supply water for pump seal, a cross-connection or mixing between the two water systems can occur. This mixing may lead to contamination of the drinking water.

CROSS-CONNECTION CONTROL DEVICE - Any device or assembly, approved by the Commissioner for construction on or installation in water supply piping, which is capable of preventing contaminants from entering the public water supply distribution system.

CROSS-CONNECTION HAZARD - Any customer facility which, because of the nature and extent of activities on the premises, or the materials used in connection with the activities or stored on the premises, would present an immediate or potential danger or health hazard to customers of the public water supply should backflow occur.

CRYPTOSPORIDIUM - A microorganism commonly found in lakes and rivers which is highly resistant to disinfection. Cryptosporidium has caused several large outbreaks of gastrointestinal illness, with symptoms that include diarrhea, nausea, and/or stomach cramps. People with severely weakened immune systems are likely to have more severe and more persistent symptoms than healthy individuals.

CT or CTcalc - The product of “residual disinfectant concentration” (C) in mg/l determined before or at the first customer, and the corresponding “disinfectant contact time” (T) in minutes, i.e., “C” x “T”. If a public water system applies disinfectants at more than one point prior to the first customer, it must determine the CT of each disinfectant sequence before or at the first
customer to determine the total percent inactivation or “total inactivation ratio”. In determining the total inactivation ratio, the public water system must determine the residual disinfectant concentration of each disinfection sequence and corresponding contact time before any subsequent disinfection application point(s). “CT99.9” is the CT value required for 99.9 Percent (3-log) inactivation of Giardia cysts. CT99.9 a variety of disinfectants and conditions appear in Tables 1.1-1.6, 2.1, and 3.1 of section 141.74(b)(3) in the code of Federal Regulations. CT99.9 is the inactivation ratio. The sum of the inactivation ratios, or total inactivation ratio shown as $E = (CT\text{ calc}) / (CT99.9)$ is calculated by adding together the inactivation ratio for each disinfection sequence. A total inactivation ratio equal to or greater than 1.0 is assumed to provide a 3-log inactivation of Giardia lamblia cysts.

CURRENT - A movement of electrons through a conductor. Measured in amperes.

CUSTOMER SERVICE LINE - The pipeline from the public water supply to the: (1) First tap, fixture, receptacle, or other point of customer water use; or (2) Secondary source of supply or pipeline branch in a building.

DAY TANK - A tank used to store a chemical solution of know concentration for feed to a chemical feeder. A day tank usually stores sufficient chemical solution to properly treat the water being treated for at least one day. Also called an AGE TANK.

DECOMPOSITION - The conversion of chemically unstable materials to more stable forms by chemical or biological action. If organic matter decays when there is no oxygen present (anaerobic conditions or putrefaction), undesirable tastes and odors are produced. Decay of organic matter when oxygen is present (aerobic conditions) tends to produce much less objectionable tastes and odors.

DEGASIFICATION - A water treatment process which removes dissolved gases from the water. The gases may be removed by either mechanical or chemical treatment methods or a combination of both.

DENSITY - A measure of how heavy a substance (solid, liquid, or gas) is for its size. Density is expressed in terms of weights per unit volume, that is, grams per cubic centimeter or pounds per cubic feet. The density of water (at 4°C or 39°F) is 1.0 gram per cubic centimeter or about 62.4 pounds per cubic foot.

DENTAL FLUOROSIS - The whitish to brownish spots seen to appear on teeth caused by high levels of fluoride in the drinking water. Also known as “mottled enamel”

DESTRATIFICATION - The development of vertical mixing within a lake or reservoir to eliminate (either totally or partially) separate layers of the temperature, plant, or animal life. This vertical mixing can be caused by mechanical means (pumps) or through the use of forced air diffusers which release air into the lower layers of the reservoir.

DETENTION TIME - The time allowed for water to collect in a settling tank. Theoretically detention time is equal to the volume of the tank divided by the flow rate.

DEWATER - To remove or separate a portion of the water present in a sludge or slurry. To dry sludge so it can be handled and disposed of. To remove or drain the water from a tank or trench.
DIATOMACEOUS EARTH - A fine, siliceous (made of silica) “earth” composed mainly of the skeletal remains of diatoms.

DIATOMACEOUS EARTH FILTRATION or (DE filtration) - A filtration method resulting in substantial particulate removal, that uses a process in which: 1) a “precoat” cake of diatomaceous earth filter media is deposited on a support membrane (septum), and 2) while the water is filtered by passing through the cake on the septum, additional filter media, known as “body feed,” is continuously added to the feed water to maintain the permeability of the filter cake.

DIATOMS - Unicellular (single cell), microscopic algae with a rigid (box-like) internal structure consisting mainly of silica.

DIMITTIS - Lakes and reservoirs which freeze over and normally go through two stratification and two mixing cycles within a year.

DIRECT CURRENT - Electrical current flowing in one direction only and essentially free from pulsation.

DIRECT FILTRATION - A method of treating water which consists of the addition of coagulation chemicals, flash mixing, coagulation, minimal flocculation, and filtration. The flocculation facilities may be omitted, but the physical-chemical reactions will occur to some extent. The sedimentation process is omitted. Also see CONVENTIONAL FILTRATION and IN-LINE FILTRATION.

DIRECT RUNOFF - Water that flows over the ground surface or through the ground directly into streams, rivers, or lakes.

DISCHARGE HEAD - The pressure (in pounds per square inch or psi) measured at the centerline of a pump discharge and very close to the discharge flange, converted into feet.

DISINFECTION - The process designed to kill most microorganisms in water, including essentially all pathogenic (disease-causing bacteria). There are several ways to disinfect, with chlorine being most frequently used in water treatment. Compare with STERILIZATION.

DISINFECTION BYPRODUCTS - A contaminant formed by the reaction of disinfection chemicals (such as chlorine) with other substances such as plant matter and other naturally occurring materials in the water. These byproducts may pose health risks in drinking water.

DISINFECTANTS/DISINFECTION BY-PRODUCTS RULE (DBPR) - The purpose of this rule is to reduce public exposure to three chemical disinfectants (chlorine, chloramines, and chlorine dioxide) and many disinfection by-products (total trihalomethanes, haloacetic acids, chlorite, and bromate).

DISINFECTANT RESIDUAL - Lingering disinfectant in the water distribution system to kill any other bacteria that might enter the distribution system later.
DISPLACEMENT METERS - These are used for measurement of low and intermediate flows, like domestic use applications. They are typically available in sizes from 5/8” through 2”.

DISSOLVED SOLIDS - The total amount of dissolved material, organic and inorganic, contained in water. Excessive dissolved solids make water unpalatable for drinking and unsuitable for industrial use. Measurements are expressed as ppm or mg/L.

DISTRIBUTION FACILITIES - Pipes, treatment, storage and other facilities used to distribute drinking water to end users.

DISTRIBUTION SYSTEM - A network of pipes leading from a treatment plant to customers plumbing systems.

DOUBLE CHECK VALVE ASSEMBLY - A type of backflow prevention device. This device or assembly is composed of two tightly closing shut-off valves surrounding two independently acting check valves, with four test cocks, one upstream of the four valves, and one between each of the four check and shut-off valves.

DPD - A method of measuring the chlorine residual in water. The residual may be determined by either titrating or comparing a developed color with color standards. DPD stands for N,N-diethyl-p-phenylene-diamine.

DRAWDOWN - The drop in the water table or level of water in the ground when water is being pumped from a well. The amount of water used from a tank or reservoir. The drop in the water level of a tank or reservoir.

DRINKING WATER PRIMACY AGENCY - The agency that has primary enforcement responsibility for national drinking water regulations, namely those promulgated under the Safe Drinking Water Act as amended. Drinking water primacy for a particular State may reside in one of a variety of agencies such as the State Health Agency, the State Environmental Agency, or the USEPA regional office. In West Virginia, this is WVDHHR/BPH/OEHS.

DROUGHT - A sustained period of inadequate or subnormal precipitation that can lead to water supply shortages, as well as increased water usage.

ESCHERICHIA COLI (E. COLI) - Microorganisms commonly found in the lower intestine of warm-blooded animals. An ideal indicator organism to test environmental samples for fecal contamination from human and animal waste. Can cause gastrointestinal illness (e.g., diarrhea, vomiting, cramps).

EFFECTIVE RANGE - That portion of the design range (usually upper 90 percent) in which an instrument has acceptable accuracy. Also see RANGE and SPAN.

EFFECTIVE SIZE (E.S.) - The diameter of the particles in a granular sample (filter media) for which 10 percent of the total grains are smaller and 90 percent larger on a weight basis. Effective size is obtained by passing granular material through sieves with varying dimensions of mesh and weighing the material retained by each sieve. The effective size is also approximately the average size of the grains.
EFFLUENT - Water or other liquid - raw, partially or completely treated - flowing FROM a reservoir, basin, treatment process or treatment plant.

EJECTOR - A device used to disperse a chemical solution into water being treated.

ELEMENT - A substance which cannot be separated into its constituent parts and still retain chemical identity. For example, sodium (Na) is an element.

EMERGENCY RESPONSE PLAN - A document that describes the actions that a drinking water utility would take in response to various emergencies, disasters, and other unexpected incidents.

END POINT - Samples are titrated to the end point. This means that a chemical is added, drop by drop, to a sample until a certain color change (blue to clear, for example) occurs. This is called the END POINT of the titration. In addition to a color change, an end point may be reached by the formation of a precipitate or the reaching of a specified pH. An end point may be detected by the use of an electronic device such as a pH meter.

EPA - U. S. Environmental Protection Agency.

ENTERIC - Of intestinal origin, especially applied to wastes or bacteria.

ENTRAIN - To trap bubbles in water either mechanically through turbulence or chemically through a reaction.

EPIDEMIC - A disease that occurs in a large number people in a locality at the same time and spreads from person to person.

EPIDEMIOLOGY - A branch of medicine which studies epidemics (diseases which affect significant numbers of people during the same time period in the same locality). The objective of epidemiology is to determine the factors that cause epidemic diseases and how to prevent them.

EPILIMNION - The upper layer of water in a thermally stratified lake or reservoir. This layer consists of the warmest water and has a fairly uniform (constant) temperature. The layer is readily mixed by wind action.

EUTROPHIC - Reservoirs and lakes which are rich in nutrients and very productive in terms of aquatic animal and plant life.

EUTROPHICIATION - The increase in the nutrient levels of a lake or other body of water; this usually causes an increase in the growth of aquatic animal and plant life.

EVAPORATION - The process by which water or other liquid becomes a gas (water vapor or ammonia vapor)

EVAPOTRANSPIRATION - The process by which water vapor passes into the atmosphere from living plants. Also called TRANSPIRATION.
EXEMPTION - State or EPA permission for a water system not to meet a certain drinking water standard. An exemption allows a system additional time to obtain financial assistance or make improvements in order to come into compliance with the standard. The system must prove that: (1) there are compelling reasons (including economic factors) why it cannot meet EPA health standards (Maximum Contaminant Levels or Treatment Techniques); (2) it was in operation on the effective date of the requirement; and (3) the exemption will not create an unreasonable risk to public health. The state must set a schedule under which the water system will comply with the standard for which it received an exemption.

Fecal coliform - Fecal coliform microorganisms come from human and animal fecal waste. Can cause gastrointestinal illness (e.g. diarrhea, vomiting, cramps).

FILTER BACKWASH RECYCLE RULE (FBRR) - The purpose of this rule is to require system to review their recycle practices and, where appropriate, work with the State to make any necessary changes to recycle practices that may compromise microbial control. This FBRR applies to all public water systems that (1) use surface or groundwater under the direct influence of surface water; (2) utilize direct or conventional filtration processes; and (3) recycle spent filter backwash water, sludge thickener supernatant, or liquids from dewatering processes.

FILTER PROFILE - Graphical representation of an individual filter performance.

Filtration - A process for removing particulate matter from water by passage through porous media.

Finished water - Water that has passed through a water treatment plant, and when all the treatment processes are completed or “finished”. This water is ready to be delivered to consumers. Also call PRODUCT WATER.

Fish eyes - Common term for large sticky balls of polymer that result from mixing dry polymer with water during the coagulation process.

Floc - Clumps of bacteria and particulate impurities that have come together and formed a cluster. Found in flocculation tanks and settling or sedimentation basins.

Flocculation - The gathering together of the fine particles after coagulation to form larger particles by a process of gentle mixing.

Fluidized - A mass of solid particles that is made to flow like a liquid by injection of water or gas is said to have been fluidized. In water treatment, a bed of filter media is fluidized by backwashing water through the filter.

Fluoridation - The addition of a chemical to increase the concentration of fluoride ions in drinking water to a predetermined optimum limit to reduce the incidence (number) of dental caries (tooth decay) in children. Defluoridation is the removal of excess fluoride in drinking water to prevent the mottling (brown stains) of teeth.

Flushing - A method used to clean water distribution lines. Hydrants are opened and water with a high velocity flows through the pipes, removes deposits form the pipes, and flows out the
hydrants.

FOOT VALVE - A special type of check valve located at the bottom end of the suction pipe on a pump. This valve opens when the pump operates to allow water to enter the suction pipe but closes when the pump shuts off to prevent water from flowing out of the suction pipe.

FREE AVAILABLE RESIDUAL CHLORINE - That portion of the total available residual chlorine composed of dissolved chlorine gas (Cl₂), hypochlorous acid (HOCl), and/or hypochlorite ion (OCl⁻) remaining in water after chlorination. This does not include chlorine that has combined with ammonia, nitrogen, or other compounds.

FREEBOARD - The vertical distance from the normal water surface to the top of the confining wall. Also, the vertical distance from the sand surface to the underside of a trough in a sand filter. This distance is also called AVAILABLE EXPANSION.

FRICTION LOSSES - The head, pressure or energy (they are the same) lost by water flowing in a pipe of channel as a result of turbulence caused by the velocity of the flowing water and the roughness of the pipe, channel walls, and restrictions caused by fittings. Water flowing in a pipe loses pressure or energy as a result of friction losses. Also see HEAD LOSS.

GARNET - A group of hard, reddish, glassy, mineral sands made up of silicates of base metals (calcium, magnesium, iron and manganese). Garnet has a higher density than sand.

GASTROENTERITIS - An inflammation of the stomach and intestine resulting in diarrhea, with vomiting and cramps when irritation is excessive. When caused by an infectious agent, it is often associated with fever.

Giardia lamblia - Commonly referred to as *Giardia*. Flagellate protozoan which is shed during its cyst stage into the feces of man and animals. A microorganism frequently found in rivers and lakes, which, if not treated properly, may cause diarrhea, fatigue, and cramps after ingestion. When water containing these cysts is ingested, the protozoan causes a severe gastrointestinal disease called giardiasis. People with severely weakened immune systems are likely to have more severe and more persistent symptoms than healthy individuals.

GIARDIASIS - Intestinal disease caused by an infestation of Giardia flagellates.

GRAB SAMPLE - A single sample collected at a particular time and place which represents the composition of the water only at that time and place.

GRADE - (1) The elevation of the invert (lowest point) of the bottom of a pipeline, canal, culvert, or similar conduit. (2) The inclination or slope of a pipeline, conduit, stream channel, or natural ground surface; usually expressed in terms of the ratio or percentage of number of units of vertical rise or fall per unit of horizontal distance. A 0.5 percent grade would be a drop of one-half per hundred feet of pipe.

GRANULAR ACTIVATED CARBON (GAC) - Media often placed on top of filter to help remove taste and odor from the water.
GREENSAND - A sand which looks like ordinary filter sand except that it is green in color. This sand is a natural ion exchange mineral which is capable of softening water.

GROUNDWATER RULE (GWR) - U.S. Environmental Protection Agency rule to protect public health from waterborne microorganisms present in groundwater sources (i.e., sources unaffected by surface water). The GWR specifies the appropriate use of disinfection in groundwater and establishes a strategy to identify groundwater systems at high risk for contamination.

GROUNDWATER UNDER THE DIRECT INFLUENCE (GWUDI) OF SURFACE WATER - Any water beneath the surface of the ground with: 1) significant occurrence of Insects or other macroorganisms algae. or large-diameter pathogens such as Giardia or, 2) significant and relatively rapid shifts in water characteristics such as turbidity, temperature, conductivity, or pH which closely correlate to climatological or surface water conditions. Direct influence must be determined for individual sources in accordance with criteria established by the State. The State determination of direct influence may be based on site-specific measurements of water quality and/or documentation of well construction characteristics and geology with field evaluation.

HALOACETIC ACIDS (FIVE) (HAA5) - A group of disinfection by-products. The sum of the concentrations in milligrams per liter of the haloacetic acid compounds (monochloroacetic acid, dichloroacetic acid, trichloroa cetic acid, monobromoacetic acid, and dibromoacetic acid), rounded to two significant figures after addition.

HARD WATER - Water having a high concentration of calcium and magnesium ions. A water may be considered hard if it has hardness greater that the typical hardness of water from the region. Some textbooks define hard water with a hardness of more than 100 mg/L as calcium carbonate.

HARDNESS, WATER - A characteristic of water caused mainly by the slats of calcium and magnesium, such as bicarbonate, carbonate, sulfate, chlorine, and nitrate. Excessive hardness in water is undesirable because it causes the formation of sap curds, increased use of soap, deposition of scale in boilers, damage in some industrial processes, and sometimes causes objectionable tastes in drinking water.

HEAD - The vertical distance (in feet) equal to the pressure (in psi) at a specific point. The pressure head is equal to the pressure in psi times 2.31 ft/psi.

HEAD LOSS - The head, pressure or energy (they are the same) lost by water flowing in a pipe or channel as a result or turbulence caused by the velocity of the flowing water and the roughness of the pipe, channel walls or restrictions caused by fittings. Water flowing in a pipe loses head, pressure or energy as a result of friction losses. Also see FRICTION LOSSES.

HEALTH ADVISORY - An EPA document that provides guidance and information on contaminants that can affect human health and that may occur in drinking water.

HOSE BIB - Faucet. A location in a water line where a hose is connected.
HUMUS - Organic portion of the soil remaining after prolonged microbial decomposition, hydrogeologic cycle. The natural process recycling water from the atmosphere down to (and through) the earth and back to the atmosphere again.

HYDRAULIC GRADE LINE (HGL) - The surface or profile or water flowing in an open channel or pipe flowing partially full. If a pipe is under pressure, the hydraulic grade line is at the level water would rise to in a small vertical tube connected to the pipe. Also see ENERGY GRADE LINE.

HYDROLOGIC CYCLE - The process of evaporation of water into the air and its return to Earth by precipitation (rain or snow). This process also includes transpiration from plants, groundwater movement, and runoff into rivers, streams and the ocean. Also called the WATER CYCLE.

HYDROSTATIC PRESSURE - The pressure at a specific elevation exerted by a body of water at rest, or in the case of groundwater, the pressure at a specific elevation due to the weight of water at higher levels in the same zone of saturation.

HYPOCHLORINATION - The application of hypochlorite compounds to water for the purpose of disinfection.

HYPOLIMNION - The lowers layer in a thermally stratified lake or reservoir. This layer consists of colder, more dense water, has a constant temperature and no mixing occurs.

IMPELLER - A rotating set of vanes in a pump designed to pump or lift water.

IMPERMEABLE - Not easily penetrated. The property of a material or soil that does not allow, or allows only with great difficulty, the movement or passage of water.

INDICATOR - A substance that gives a visible change, usually of color, at a desired point in a chemical reaction, generally at a specified end point.

INFLUENT - Water or other liquid - raw or partially treated - flowing INTO a reservoir, basin, or treatment process of treatment plant.

INITIAL DISTRIBUTION SYSTEM EVALUATION (IDSE) - Initial distribution system evaluation. Sampling process used to determine DBP sampling sites under stage 2 DPB Rule.

IN-LINE FILTRATION - The addition of chemical coagulants directly to the filter inlet pipe. The chemicals are mixed by the flowing water. Flocculation and sedimentation facilities are eliminated. This pretreatment method is commonly used in pressure filter installation. Also see CONVENTIONAL FILTRATION and DIRECT FILTRATION.

INORGANIC - Material such as sand, salt, iron, calcium salts and other mineral materials. Inorganic substances are of mineral origin, whereas organic substances are usually of animal or plant origin. Also see ORGANIC.

INSECTICIDE - Any substance or chemical formulated to kill or control insects.
INVERT - The lowest point of the channel inside a pipe, conduit, or canal.

JAR TEST - A laboratory procedure that stimulates a water treatment plant’s coagulation/flocculation units with differing chemical doses and also energy of rapid mix, energy of slow mix, and settling time. The purpose of this procedure is to ESTIMATE the minimum or ideal coagulant dose required to achieve certain water quality goals. Samples of water to be treated are commonly placed in six jars. Various amounts of chemicals that provides satisfactory settling removal of turbidity and/or color is the dose used to treat the water being taken into the plant at that time. When evaluating the results of a jar test, the operator should also consider the floc quality in the flocculation area and the floc loading on the filter.

LANGELIER INDEX - An index reflecting the equilibrium pH of water with respect to calcium and alkalinity. This index is used in stabilizing water to control both corrosion and the deposition of scale.

LEGIONELLA - A genus of bacteria, some species of which have caused a type of pneumonia called Legionnaires Disease.

LOCAL EMERGENCY PLANNING COMMITTEE (LEPC) - Established by the Emergency Planning and Community Right-to-Know Act, LEPCs have the job of increasing community hazardous materials safety through public education, emergency planning, responder training, conducting exercises, and reviewing actual responses to releases.

LONG TERM 1 ENHANCED SURFACE WATER TREATMENT RULE (LT1ESWTR) - The purpose of this rule is to improve small systems’ control of microbial pathogens in drinking water, particularly for the protozoan *Cryptosporidium*. In addition, the rule includes provisions to assure continued levels of microbial protection while utilities take the necessary steps to comply with new disinfection by-product standards.

LONG TERM 2 ENHANCED SURFACE WATER TREATMENT RULE (LT2ESWTR) - The purpose of this rule is to (1) improve control of microbial pathogens, particularly *Cryptosporidium*, and (2) address risk trade-offs with disinfection by-products.

MACROSCOPIC - Organisms big enough to be seen by the eye without the aid of a microscope.

MASTER METERING - Large meter at a point of distribution to multiple uses or users that could be further sub metered.

MATERIAL SAFETY DATA SHEET - A document which provides pertinent information and a profile of a particular hazardous substance or mixture. An MSDS is required to be made available to employers and operators whenever there is the likelihood of the hazardous substance or mixture being introduced into a workplace.

MAXIMUM CONTAMINANT LEVEL (MCL) - The largest allowable amount. The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLG as feasible using the best available treatment technology and taking cost into consideration. MCLs are enforceable standards. MCLs for various water quality indicators are specified in the National Interim Primary Drinking Water Regulations (NIPDWR).
MAXIMUM CONTAMINANT LEVEL GOAL (MCLG) - The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. MCLGs are non-enforceable health goals.

MAXIMUM-DAY DEMAND - Total production for the water system on its highest day of production during a year.

MAXIMUM RESIDUAL DISINFECTION LEVEL (MRDL) - The highest level of a disinfectant allowed in drinking water. There is convincing evidence that the addition of a disinfectant is necessary for control of microbial contaminants.

MAXIMUM RESIDUAL DISINFECTANT LEVEL GOAL (MRDLG) - The level of a drinking water disinfectant below which there is no known or expected risk to health. Maximum Residual Disinfectant Level Goals do not reflect the benefits of the use of disinfectants to control microbial contaminants.

MENISCUS - The curved top of a column of liquid (water, oil, mercury) in a small tube. When the liquid wets the sides of the container (as with water), the curve forms a valley. When the confining sides are not wetted (as with mercury), the curve forms a hill or upward bulge.

METALIMNION - The middle layer in a thermally stratified lake or reservoir. In this layer there is a rapid decrease in temperature with depth. Also called the THERMOCLINE.

METER - An instrument for measuring and recording water volume.

METER MAINTENANCE PROGRAM - Scheduled program whereby meters are tested and repaired before there is a noticeable drop in consumption.

MICROBIAL GROWTH - The activity and growth of microorganisms such as bacteria, algae, diatoms, plankton and fungi.

MICROORGANISMS - Living organisms that can be seen individually only with the aid of a microscope.

MILLIGRAMS PER LITER (mg/L) - A measure of the concentration by weight of a substance per unit volume. For practical purposes, one mg/L of a substance in fresh water is equal to one part per million parts (ppm).

MONITORING - Testing that water systems must perform to detect and measure contaminants. A water system that does not follow EPA's monitoring methodology or schedule is in violation, and may be subject to legal action.

MONOMICTIC - Lakes and reservoirs which are relatively deep, do not freeze over during the winter months, and undergo a single stratification and mixing cycle during the year. These lakes and reservoirs usually become destratified during the mixing cycle, usually in the fall of the year.

MUDBALLS - Material that is approximately round in shape and varies from pea-sized up to two or more inches in diameter. This material forms in filters and gradually increases in size when not removed by the backwashing process.
NATIONAL PRIMARY DRINKING WATER REGULATIONS (NPDWR) - Legally enforceable standards that apply to public water systems. These standards protect drinking water quality by limiting the levels of specific contaminants that can adversely affect public health and which are known or anticipated to occur in public water supplies. Also known as Primary Standards.

NATIONAL SECONDARY DRINKING WATER REGULATIONS (NSDWR) - Non-enforceable federal guidelines regarding cosmetic effects (such as tooth or skin discoloration) or aesthetic effects (such as taste, odor, or color) of drinking water. Also known as Secondary Standards.

NEPHELOMETRIC - A means of measuring turbidity in a sample by using an instrument called a nephelometer. A nephelometer passes light through a sample and the amount of light deflected (usually at a 90-degree angle) is then measured.

NEPHELOMETRIC TURBIDITY UNIT (NTU) - The unit of measure for turbidity.

NIOSH - The National Institute of Occupations Safety and Health is an organization that tests and approves safety equipment for particular applications. NIOSH is the primary Federal agency engaged in research in the national effort to eliminate on-the-job hazards to the health and safety of working place. The NIOSH Publications Catalog contains a listing of NIOSH publications mainly on industrial hygiene and occupational health. To obtain a copy of the catalog, write to NIOSH Publications, 4676 Columbia Parkway, Cincinnati, Ohio 45226.

NON-ACCOUNT WATER - Metered source water less metered water sales.

NON-COMMUNITY WATER SYSTEM (NCWS) - A public water system that is not a community water system. There are two types of NCWSs: transient and non-transient.

NONPOINT SOURCE - A runoff or discharge from a field or similar source. A point source refers to a discharge that comes out the end of a pipe.

NONPOTABLE - Water that may contain objectionable pollution, contamination, minerals, or infective agents and is considered unsafe and/or unpalatable for drinking.

NON-RESIDENTIAL CUSTOMER - A commercial or industrial utility customer.

NONSETTLEABLE SOLIDS - Smaller sized particles, such as bacteria and fine clays and silts, that do not readily settle and treatment is required for removal.

NON-TRANSIENT NON-COMMUNITY WATER SYSTEM (NTNCWS) - A public water system that regularly serves at least 25 of the same nonresident persons per day for more than six months per year.

NPDES PERMIT - National Pollutant Discharge Elimination System permit is the regulatory agency document designed to control all discharges of pollutant from point sources in US waterways. NPDES permits regulate discharges into navigable waters from all point sources of pollution, including industries, municipal treatment plants, large agricultural feed lots and return irrigation flows.
NUTRIENT - Any substance that is assimilated (taken in) by organisms and promotes growth. Nitrogen and phosphorus are nutrients which promote the growth of algae. There are other essential and trace elements which are also considered nutrients.

ODOR THRESHOLD - The minimum odor of a water sample that can just be detected after successive dilutions with odorless water. Also called THRESHOLD ODOR.

OHMS - A unit of electrical resistance equal to that of a conductor in which a current of one ampere is produced by a potential of one volt across its terminals.

OLFACTORARY FATIGUE - A condition in which a person’s nose, after exposure to certain odors, so no longer able to detect the odor.

OLIGOTHOPHIE - Reservoirs and lakes which are nutrient poor and contain little aquatic plant or animal life.

OPERATION AND MAINTENANCE COSTS - The ongoing, repetitive costs of operating a water system; for example, employee wages and costs for treatment chemicals and periodic equipment repairs.

ORGANIC - Substances that come from animal or plant sources. Organic substances always contain carbon. (Inorganic materials are chemical of mineral origin.) Also see INORGANIC.

ORGANICS - A term used to refer to chemical compounds made from carbon molecules. These compounds may be natural materials (such as animal and plant source) or man-made materials (such as synthetic organics). Also see ORGANIC.

ORGANISM - Any form of animal or plant life. See also BACTERIA.

OVERFLOW RATE - One of the guidelines for the design of settling tanks and clarifiers in treatment plants. Used by operators to determine if tanks and clarifiers are hydraulically (flow) over- or underloaded. Overflow Rate (GPD/sq ft) = Flow (GPD)/Surface Area (sq ft) particle count. The results of a microscopic examination of treated water with a special “particle counter” which classifies suspended particles by number and size.

OXYGEN DEFICIENCY - An atmosphere containing oxygen at a concentration of less than 19.5 percent by volume.

PALATABLE - Water at a desirable temperature that is free from objectionable tastes, odors, colors, and turbidity. Pleasing to the senses.

PARSHALL FLUME - A device used to measure the flow in an open channel. The flume narrows to a throat of fixed dimensions and then expands again. The rate of flow can be calculated by measuring the difference in head (pressure) before and at the throat of the flume.

PARTICLE COUNT - The results of a microscopic examination of treated water with a special “particle counter” which classifies suspended particles by number and size.
PARTICULATE - A very small solid suspended in water which can vary widely in size, shape, density, and electrical charge. Colloidal and dispersed particulates are artificially gathered together by the processes of coagulation and flocculation.

PARTS PER MILLION (PPM) - Parts per million parts, measurement of concentration on a weight or volume basis. This term is equivalent to milligrams per liter (mg/L) which is the preferred term.

PASSIVATION - Covering the surface of pipes with a protective coating

PATHOGENIC ORGANISMS - Organisms, including bacteria, viruses or cysts, capable of causing diseases (typhoid, cholera, dysentery) in a host (such as a person). There are many type of organisms which do NOT cause disease. These organisms are called non-pathogenic.

PATHOGENS - Pathogenic or disease-causing organisms.

PEAK DEMAND - The maximum momentary load placed on a water treatment plant, pumping station or distribution system. This demand is usually the maximum average load in one hour or less, but may be specified as the instantaneous or with some other short time period.

PER-CAPITA USE - Total use divided by the total population served.

PERISTALTIC METERING PUMP - A positive displacement pump that uses the alternating waves of contraction and dilation of a plastic tubing to move liquid through the tubing into the water line.

PERMEABILITY - An aquifer characteristic measure of how fast water can travel through material. A measure of interconnectivity of pore spaces.

PERSONAL PROTECTIVE EQUIPMENT (PPE) - Equipment and supplies designed to protect employees from serious injuries or illnesses resulting from contact with chemical, radiological, biological, or other hazards. PPE includes face shields, safety glasses, goggles, laboratory coats, gloves, and respirators.

pH - pH is an expression of the intensity of the basic or acid condition of a liquid. Mathematically, pH is the logarithm (base 10) of the reciprocal of the hydrogen ion activity.

PHENOLPHTHALEIN ALKALINITY - The alkalinity in a water sample measured by the amount of standard acid required to lower the pH to a level of 8.3, as indicated by the change in color of phenolphthalein from pink to clear. Phenolphthalein alkalinity is expresses as milligrams per liter equivalent calcium carbonate.

PITLESS ADAPTER - A fitting which allows the well casing to be extended above the ground while having a discharge connection located below the frost line. Advantages of using a pitless adapter include the elimination of the need for a pit or pump house and it is a water-tight design, which helps maintain a sanitary water supply.

PITOT GAUGE - Measures pressure of flowing water.
PLUG FLOW - A type of flow that occurs in tanks, basins or reactors when a slug of water moves through a tank without ever dispersing or mixing with the rest of the water flowing through the tank.

POINT SOURCE - A discharge that comes out of the end of a pipe. A nonpoint source refers to runoff or a discharge from a field or similar source.

POLYMER - A chemical formed by the union of many monomers (a molecule of low molecular weight). Polymers are used with other chemical coagulants to aid in binding small suspended particles to larger chemical flocs for their removal from water. All polyelectolytes are polymer, but not all polymers are polyelectolytes.

POSITIVE DISPLACEMENT PUMP - A type of piston, diaphragm, gear or screw pump that delivers a constant volume with each stroke. Positive displacement pumps are used as chemical solution feeders.

PORE - A very small open space in a rock or granular material.

POROSITY - A measure of the spaces or voids in a material or aquifer. The ratio of the volume of spaces in a rock or soil to the total volume. This ratio is usually expressed as a percentage.

POSSIBLE - A stage in the threat evaluation process in which available information indicates there is an opportunity for an incident (i.e., the threat is possible).

POSTCHLORINATION - The addition of chlorine to the plant effluent, FOLLOWING plant treatment, for disinfection purposes.

POTABLE WATER - Water that does not contain objectionable pollution, contamination, minerals, or infective agents and is considered satisfactory for drinking.

POTASSIUM PERMANGANATE (K\textsubscript{2}MnO\textsubscript{4}) - A strong chemical oxidizer which can be used to destroy many organic compounds, both natural and manufactured, present in water supplies. Permanganate is also used to oxidize iron, manganese, and sulfide compounds and is often used in conjunction with aeration for the control of these and other taste- and odor-producing substances.

PRECHLORINATION - The addition of chlorine at the headworks of the plant PRIOR TO other treatment process mainly for disinfection and control of tastes, odors and aquatic growths. Also applied to aid in coagulation and settling.

PRECISION - The ability of an instrument to measure a process variable and to repeatedly obtain the same result. The ability of an instrument to reproduce the same results.

PRECURSOR - Natural organic compounds found in all surface and groundwaters. These compounds MAY react with halogens (such as chlorine) to form trihalomethanes; they MUST be present in order for THMs to form.
PRESSURE CONTROL - A switch which operates on changes in pressure. Usually this is a diaphragm pressing against a spring. When the force on the diaphragm overcomes the spring pressure, the switch is actuated (activated).

PRESSURE HEAD - The vertical distance (in feet) equal to the pressure (in psi) at a specific point. The pressure head is equal to the pressure in psi times 2.31 ft/psi.

PRESSURE REGULATOR - A post-meter device used to limit water pressure.

PRESSURE VACUUM BREAKER (PVB) - A type of backflow prevention device. A device or assembly containing an independently operating internal loaded check valve and an independently operating loaded air inlet valve located on the downstream side of the check valve for relieving a vacuum or partial vacuum in a pipeline.

PRIMACY - Primary enforcement authority for the drinking water program. Under the Safe Drinking Water Act, states, U.S. territories, and Indian tribes that meet certain requirements, including setting regulations that are at least as stringent as EPA's, may apply for, and receive, primary enforcement authority, or primacy.

PRIME - The action of filing a pump casing with water to remove the air. Most pumps must be primed before startup of they will not pump any water.

PRODUCTION METER - Meters on wells for water leaving the plant or pumping station.

PROTOZOAN - Any of a large group of single-celled, usually microscopic, eukaryotic organisms, such as amoebas, ciliates, flagellates, and sporozoans.

PUBLIC NOTIFICATION - An advisory EPA or the state requires a water system to distribute to affected consumers when the system has violated Maximum Contaminant Levels or other regulations. The notice advises consumers what precautions, if any, they should take to protect their health.

PUBLIC WATER SYSTEM (PWS) - A system for the provision to the public of piped water for human consumption, If such system has at least fifteen service connections or regularly least 60 days out of the year. Such term includes: 1) any collection, treatment, storage, and distribution facilities under control of the operator of such system and used primarily in connection with such system, and 2) any collection or pretreatment storage facilities not under such control which are used primarily in connection with such system. A public water system is either a “community water system” or a “non-community water system.”

PUMPING WATER LEVEL - The vertical distance in feet from the centerline of the pump discharge to the level of the free pool while water is being drawn from the pool.

QUALITY ASSURANCE - An integrated system of management activities involving planning, implementation, documentation, assessment, reporting, and quality improvement, to ensure that a process, item, or service is of the type and quality needed and expected by the client.

QUALITY CONTROL - The overall system of technical activities that measures the attributes and performance of a process, item, or service against defined standards to verify that they meet
the stated requirements established by the client; operational techniques and activities that are used to fulfill requirements for quality.

QUICKLIME - A material that is mostly calcium oxide (Ca) or calcium oxide in natural association with a lesser amount of magnesium oxide. Quicklime is capable of combining with water, that is, becoming slaked. Also see HYDRATED LIME.

RADIONUCLIDE - An unstable form of a chemical element that radioactively decays, resulting in the emission of nuclear radiation. Prolonged exposure to radionuclides increases the risk of cancer. All of the radionuclides known to occur in drinking water are currently regulated, except for radon and naturally-occurring uranium, both of which were proposed for regulation in October 1999.

RADON RULE - Developed to reduce public radon exposure and applies to all community water systems that use groundwater or mixed ground and surface water. The regulation does not apply to non-transient non-community public water supplies or to transient public water supplies.

RANNEY COLLECTOR - This water collector is constructed as a dug well from 12 to 16 feet (3.5 to 5 m) in diameter that has been sunk as a caisson near the bank of a river or lake. Screens are driven radially and approximately horizontally from this well into the sand and the gravel deposits underlying the river.

RATE - Monies collected for water provided. Every water utility must receive sufficient total revenue to ensure proper operations and maintenance, development and perpetuation of the system, and the preservation of the utility’s financial integrity.

RATER STRUCTURE - Means of establishing charges for water usage.

RAW WATER - Water in its natural state, prior to any treatment. Usually the water entering the first treatment process of a water treatment plant.

REAGENT - A pure chemical substance that is used to make new products or is used in chemical tests to measure, detect, or examine other substances.

RECHARGE - Replenishment of groundwater.

REDUCED PRESSURE ZONE ASSEMBLY (RPZ) - A device composed of two tightly closing shut-off valves surrounding two independently acting pressure reducing check valves that, in turn, surround an automatic pressure differential relief valve, and four test cocks, one upstream of the five valves and one between each of the four check and shut-off valves. The check valves effectively divide the structure into three chambers; pressure is reduced in each downstream chamber allowing the pressure differential relief valve to vent the center chamber to atmosphere should either or both check valves malfunction.

RESIDUAL CHLORINE - The amount of free and/or available chlorine remaining after a given contact time under specified conditions.
REPRESENTATIVE SAMPLE - A sample portion of material or water that is as nearly identical in content and consistency as possible to that in the larger body of material or water being sampled.

RESERVOIR - Any natural or artificial holding area used to store; regulate, or control water.

RETAIL WATER METER - Meters to monitor large customer water usage.

REVENUE-PRODUCING WATER - Water metered and sold.

REVERSE OSMOSIS (RO) - The application of pressure to a concentrated solution which causes the passage of a liquid from the concentrated solution to a weaker solution across a semipermeable membrane. The membrane allows the passage of the solvent (water) but not the dissolved solids (solute). The liquid produced is a demineralized water.

ROTAMETER - A device used to measure the flow rate of gases and liquids. The gas or liquid being measured flows vertically up a tapered, calibrated tube. Inside the tube is a small ball or bullet-shaped float (it may rotate) that rises or falls depending on the flow rate. The flow rate may be read on a scale behind or on the tube by looking at the middle of the ball or at the widest part or top of the float.

SAFE DRINKING WATER ACT - Commonly referred to as SDWA. An Act passed by the US Congress in 1974. The Act establishes a cooperative program among local, state, and federal agencies to insure safe drinking water for consumers.

SAFE YIELD - The annual quantity of water that can be taken from a source of supply over a period of years without depleting the source permanently (beyond its ability to be replenished naturally in “wet years”).

SAMPLE - The water that is analyzed for the presence of EPA-regulated drinking water contaminants. Depending on the regulation, EPA requires water systems and states to take samples from source water, from water leaving the treatment facility, or from the taps of selected consumers.

SAND FILTERS - Devices that remove some suspended solids from sewage. Air and bacteria decompose additional wastes filtering through the sand so that cleaner water drains from the bed.

SANITARY SURVEY - A detailed evaluation and/or inspection of a source of water supply and all conveyances, storage, treatment and distribution facilities to insure its protection from all pollution sources.

SATURATED ZONE - Area beneath the unsaturated zone where all interconnected openings contain water, and is officially considered groundwater.

SATURATOR - A device which produces fluoride solution for the fluoridation process. The device is usually a cylindrical container with granular sodium fluoride on the bottom. Water flows either upward or downward through the sodium fluoride to produce the fluoride solution.
SEDIMENTATION - A water treatment process in which solid particles settle out of the water being treated in a large clarifier or sedimentation basin.

SEPTIC - A condition produced by bacteria when all oxygen supplies are depleted. If severe, bottom deposits and water turn black, give foul odors, and the water has greatly increased chlorine demand.

SEQUESTRATION - A chemical complexing (forming or joining together) of metallic cations (such as iron) with certain inorganic compounds, such as phosphate. Sequestration prevents the precipitation of the metal (iron). Also see CHELATION.

SHORING EQUIPMENT - Equipment installed in trenches to prevent the collapse of the trench.

SHORT-CIRCUITING - A condition that occurs in tanks or basins when some of the water travels faster than the rest of the flowing water. This is usually undesirable since it may result in shorter contact, reaction, or settling times in comparison with the theoretical (calculated) or presumed detention times.

SLOW SAND FILTRATION - A process involving passage of raw water through a bed of sand at low velocity (generally less than 0.4 m/h) resulting in substantial particulate removal by physical and biological mechanisms.

SOFT WATER - Water having a low concentration of calcium and magnesium ions. According to US Geological Survey guidelines, soft water is water having a hardness of 60 milligrams per liter or less.

SOLE SOURCE AQUIFER - An aquifer that supplies 50 percent or more of the drinking water of an area.

SOLUTION - A liquid mixture of dissolved substances. In a solution it is impossible to see all the separate parts.

SOURCE-OF-SUPPLY - Facilities used to extract and/or store raw water prior to transmission and distribution.

SOURCE METER - A meter used to record water withdrawn from a surface water or groundwater source, or purchased from a wholesale supplier.

SOURCE WATER - Water in its natural state, prior to any treatment for drinking. See finished water.

SOURCE WATER ASSESSMENT - Provides information about the potential contaminant threats to public drinking water sources.

SPECIFIC CAPACITY - Expresses the productivity of a well. Specific capacity is obtained by dividing the well discharge rate by the well drawdown while pumping. It is calculated by dividing the production of the well in gallons per minute by the feet of drawdown between the static water level and the pumping water level. Water levels need to stabilize before
measurements are made. The gallons per minute should be the normal production rate of the well and pumping equipment.

SPECIFIC YIELD - The quantity of water that a unit volume of saturated permeable rock or soil will yield when drained by gravity. Specific yield may be expressed as a ratio or as a percentage by volume.

STAGE 1 DISINFECTANTS/DISINFECTION BY-PRODUCT RULE (S1DBPR) - The purpose of this rule is to reduce public exposure to three chemical disinfectants (chlorine, chloramines, and chlorine dioxide) and many disinfection by-products (total trihalomethanes, haloacetic acids, chlorite, and bromate).

STAGE 2 DISINFECTANTS/DISINFECTION BY-PRODUCT RULE (S2DBPR) - The rule builds upon the Stage 1 DBPR to further reduce public exposure to disinfection by-products. Because disinfection byproduct concentrations can increase with increase time (i.e., increasing water age), the U.S. EPA is emphasizing compliance monitoring locations that reflect parts of the distribution system with older water. Compliance monitoring for the Stage 2 DBPR will be preceded by an initial distribution system evaluation to select site specific optimal sample points for capturing peaks. The requirements for Stage 2 DBPR will apply to all community water systems and non-transient non-community water systems that add a disinfectant other than UV or deliver water that has been disinfected.

STANDARD METHODS FOR THE EXAMINATION OF WATER AND WASTEWATER - A joint publication of the American Public Health Association, American Water Works Association, and the Water Pollution Control Federation which outlines the procedures used to analyze the impurities in water and wastewater.

STATE REVOLVING FUND (SRF) - State loan funds for water utilities established under the Safe Drinking Water Act.

STATIC HEAD - When water is not moving, the vertical distance (in feet) from a specific point to the water surface. The static pressure in psi is the static head in feet times 0.433 psi/ft. Also see DYNAMIC PRESSURE and STATIC PRESSURE.

STATIC PRESSURE - When water is not moving, the vertical distance (in feet) from a specific point to the water surface. The static pressure in psi is the static head in feet times 0.433 psi/ft. Also see DYNAMIC PRESSURE and STATIC PRESSURE.

STATIC WATER LEVEL - The elevation or level of the water table in a well when the pump is not operating. The level or elevation to which water would rise in a tube connected to an artesian aquifer, or basin, or conduit under pressure.

STERILIZATION - The removal or destruction of all microorganisms, including pathogenic and other bacteria, vegetative forms and spores. Compare with DISINFECTION.

STRATIFICATION - The formation of separate layers (of temperature, plant, or animal life) in a lake or reservoir. Each layer has similar characteristics such as all water in the layer has the same temperature. Also see THERMAL STRATIFICATION.
SUBMERGENCE - The distance between the water surface and the media surface in a filter.

SUBPART H SYSTEM - Is a public water system serving surface water or groundwater under the influence of surface water. These systems are subject to the filtration and disinfection requirements of 40 CFR Subpart H.

SUCTION LIFT - The NEGATIVE pressure [in feet (meters) of water or inches (centimeters) of mercury vacuum] on the suction side of the pump. The pressure can be measured from the centerline of the pump DOWN TO (life) the elevation of the hydraulic grade line on the suction side of the pump.

SUPERNATANT - Liquid removed from settled sludge. Supernatant commonly refers to the liquid between the sludge on the bottom and the water surface of a basin or container.

SURFACE LOADING - One of the guidelines for the design of settling tanks and clarifiers in treatment plants. Used by operators to determine if tanks and clarifiers are hydraulically (flow) over or underloaded. Also called OVERFLOW RATE.

SURFACE WATER - All water naturally open to the atmosphere (rivers, lakes, reservoirs, streams, impoundments, seas, estuaries, etc.) and all springs, wells, or other collectors which are directly influenced by surface water.

SUSPENDED SOLIDS - (1) Solids that either float on the surface or are suspended in water or other liquids, and which are largely removable by laboratory filtering. (2) The quantity of material removed from water in a laboratory test, as prescribed in STANDARD METHODS FOR THE EXAMINATION OF WATER AND WASTEWATER and referred to as nonfilterable residue.

TELEMETRY - The electrical link between the transmitter and the receiver. Telephone lines are commonly used to serve as the electrical line.

THERMAL STRATIFICATION - The formation of layers of different temperatures in a lake or reservoir. Also see STRATIFICATION.

THERMOCLINE - The middle layer in a thermally stratified lake or reservoir. In this layer there is a rapid decrease in temperature with depth. Also call the METALIMNION.

THREAT - An indication that a harmful incident, such as contamination of the drinking water supply, may have occurred. The threat may be direct, such as a verbal or written threat, or circumstantial, such as a security breach or unusual water quality.

THREAT EVALUATION - Part of the threat management process in which all available and relevant information about the threat is evaluated to determine if the threat is ‘possible’ or ‘credible’, or if an incident has been ‘confirmed.’ This is an iterative process in which the threat evaluation is revised as additional information becomes available. The conclusions from the threat evaluation are considered when making response decisions.

THREAT MANAGEMENT - The process of evaluating a contamination threat and making decisions about appropriate response actions. The threat management process includes the parallel activities of the threat evaluation and making response decisions. The threat
management process is considered in three stages: ‘possible’, ‘credible’, and ‘confirmatory.’ The severity of the threat and the magnitude of the response decisions escalate as a threat progresses through these stages.

THREAT WARNING - An occurrence or discovery that indicates a threat of a malevolent act and triggers an evaluation of the threat.

THRUST BLOCK - A mass of concrete or similar material appropriately placed around a pipe to prevent movement when the pipe is carrying water. Usually placed at bends and valve structures.

TITRATE - To TITRATE a sample, a chemical solution of known strength is added on a drop-by-drop basis until a certain color change, precipitate, or pH change in the sample is observed (end point). Titration is the process of adding the chemical reagent in increments until completion of the reaction, as signaled by the end point.

TOTAL COLIFORM - Coliforms (including fecal coliform and *E. coli*) are naturally present in the environment. Fecal Coliforms and *E. coli* come from human and animal fecal waste. Total Coliform are used as an indicator that other potential harmful bacteria may be present.

TOTAL ORGANIC CARBON (TOC) - total organic carbon in mg/L measured using heat, oxygen, ultraviolet irradiation, chemical oxidants, or combinations of these oxidants that convert organic carbon to carbon dioxide, rounded to two significant figures.

TOTAL DISSOLVED SOLIDS (TDS) - All of the dissolved solids in a water. TDS is measured on a sample of water that has passed through a very fine mesh filter to remove suspended solids. The water passing through the filter is evaporated and the residue represents the dissolved solids. Also see SPECIFIC CONDUCTANCE.

TOTAL DYNAMIC HEAD (TDH) - When a pump is lifting or pumping water, the vertical distance (in feet) from the elevation of the energy grade line on the suction side of the pump to the elevation of the energy grade line on the discharge side of the pump.

TOTAL RESIDUAL CHLORINE - The amount of available chlorine remaining after a given contact time. The sum of the combined available residual chlorine and the free available residual chlorine. Also see RESIDUAL CHLORINE.

TOXIC - A substance which is poisonous to an organism.

TRANSIENT WATER SYSTEM - A non-community water system that does not serve 25 of the same nonresident persons per day for more than six months per year. Also called a transient non-community water system (TNCWS).

TRANSMISSION FACILITIES - Pipes used to transport raw or treated water to distribution facilities.

TRANSPERSION - The evaporation of water from plants.

TREATED WATER - Water treated to meet drinking water standards.
TREATMENT TECHNIQUE - A required process intended to reduce the level of a contaminant in drinking water.

TRIHALOMETHANES (THM) - A byproduct of drinking water disinfection. Can cause liver, kidney, or central nervous system problems, as well as increase the risk of cancer.

TUBERCULE - A protective crust of corrosion products (rust) which builds up over a pit caused by the loss of metal due to corrosion.

TUBE SETTLER - A device that uses bundles of small bore (2 to 3 inches or 50 to 75 mm) tubes installed on an incline as an aid to sedimentation. The tubes may come in a variety of shapes including circular and rectangular. As water rises within the tubes, settling solids fall to the tube surface. As the sludge (from the settled solids) in the tube gains weight, it moves down the tubes and settles to the bottom of the basin for removal by conventional sludge collection means. Tube settlers are sometimes installed in sedimentation basins and clarifiers to improve particle removal.

TURBID - Having cloudy or muddy appearance.

TURBIDITY - The cloudy appearance of water caused by the presence of suspended and colloidal matter. In the waterworks field, a turbidity measurement is used to indicate the clarity of the water. Technically, turbidity is an optical property of the water based on the amount of light reflected by suspended solids. Turbidity cannot be directly equated to suspended solids because white particles reflect more light than dark-colored particles and many small particles will reflect more light than an equivalent large particle.

TURBIDIMETER - An instrument for measuring and comparing the turbidity of liquids by passing light through them and determining how much light is reflected by the particles in the liquid.

UNACCOUNTED-FOR WATER - The amount of non-account water less known or estimated losses and leaks.

UNCONFINED AQUIFER - The saturated formation in which the upper surface fluctuates with addition or subtraction of water. The upper surface of an unconfined aquifer is called the water table. Water, contained in an unconfined aquifer, is free to move laterally in response to differences in the water table elevations. Also known as a water table aquifer.

UNSATURATED ZONE - Area immediately beneath the earth surface that contains both water and area, and is not considered groundwater.

UN-METERED WATER - Water delivered but not measured for accounting and billing purposes.

UV DISINFECTION - A disinfection process exposing the water supply to ultraviolet light (irradiation) to provide pathogen inactivation.

VARIANCE - State or EPA permission not to meet a certain drinking water standard. The water system must prove that: (1) it cannot meet a Maximum Contaminant Level, even while using the
best available treatment method, because of the characteristics of the raw water, and (2) the variance will not create an unreasonable risk to public health. The state or EPA must review, and allow public comment on, a variance every three years. States can also grant variances to water systems that serve small populations and which prove that they are unable to afford the required treatment, an alternative water source, or otherwise comply with the standard.

VELOCITY - A measure of how fast water flows, usually expressed in feet/second or (distance/time).

VENTURI METER - A flow measuring device placed in a pipe. The device of a tube whose diameter gradually decreases to a throat and then gradually expands to the diameter of the pipe. The flow is determined on the bases of the differences in pressure (caused by different velocity heads) between the entrance and throat of the Venturi meter.

VIOLATION - A failure to meet any state or federal drinking water regulation.

VIRUS - The smallest form of microorganisms capable of causing disease. Especially, a virus of fecal origin that is infectious to humans by waterborne transmission.

VOLATILE - A substance that is capable of being evaporated or easily changed to a vapor at relatively low temperatures. For example, gasoline is a highly volatile liquid.

VOLTAGE - The electrical pressure available to cause a flow of current (amperage) when an electrical circuit is closed. Also called ELECTROMOTIVE FORCE (E.M.F.)

VULNERABILITY ASSESSMENT - An evaluation of drinking water source quality and its vulnerability to contamination by pathogens and toxic chemicals. A systematic process for evaluating the susceptibility of critical facilities to potential threats and identifying corrective actions that can reduce or mitigate the risk of serious consequences associated with these threats.

WATER AUDIT - A thorough examination of the accuracy of water agency records or accounts (volumes of water) and system control equipment. Water managers can use audits to determine their water distribution system efficiency. The overall goal is to identify and verify water and revenue losses in a water system.

WATERBORNE DISEASE OUTBREAK - The significant occurrence of acute infectious illness, epidemiologically associated with the ingestion of water from a public water system that is deficient in treatment, as determined by the appropriate local or state agency.

WATER CONTAMINATION INCIDENT - A situation in which a contaminant has been successfully introduced into the system. A water contamination incident may or may not be preceded by a water contamination threat.

WATER CONTAMINATION THREAT - A situation in which the introduction of a contaminant into the water system is threatened, claimed, or suggested by evidence. Compare water contamination threat with water contamination incident. Note that threatening a water system may be a crime under the Safe Drinking Water Act as amended by the Bioterrorism Act.

WATER CYCLE - Also known as the hydrologic cycle, describes the continuous movement of
water on, above, and below the surface of the Earth. Processes include precipitation, condensation, interception, runoff, infiltration/percolation, transpiration and evaporation.

WATER HAMMER - The sound like someone hammering on a pipe that occurs when a valve is opened or closed very rapidly. When a valve position is changed quickly, the water pressure in a pipe will increase and decrease back and forth very quickly. This rise and fall in pressure can do serious damage to the system.

WATER RIGHT - A property right or legal claim to withdraw a specified amount of water in a specified time frame for a beneficial use.

WATERSHED - A regional land area, defined by topography, soil, and drainage characteristics, within which raw waters collect and replenish supplies.

WATER TABLE - The upper surface of the zone of saturation of groundwater in an unconfined aquifer. All water beneath is considered groundwater.

WEIR - (1) A wall or plate placed in an open channel and used to measure the flow of water. The depth of the flow over the weir can be used to calculate the flow rate, or a chart or conversion table may be used. (2) A wall of obstruction used to control flow (from settling tanks and clarifiers) to assure uniform flow rate and to avoid short-circuiting.

WEIR DIAMETER - Many circular clarifiers have a circular weir with the outside edge of the clarifier. All the water leaving the clarifier flows over this weir. The diameter of the weir is the length of a line from one edge of a weir to the opposite edge and passing through the center of the circle formed by the weir.

WEIR LOADING - A guideline used to determine the length of weir needed on settling tanks and clarifiers in treatment plants. Used by operators to determine if weirs are hydraulically (flow) overloaded.

WELL LOG - A record of the thickness and characteristics of the soil, rock and water-bearing formations encountered during the drilling (sinking) of a well.

WELLHEAD PROTECTION AREA - The area surrounding a drinking water well or well field which is protected to prevent contamination of the well(s).

WEIR DIAMETER - Many circular clarifiers have a circular weir with the outside edge of the clarifier. All the water leaving the clarifier flows over this weir. The diameter of the weir is the length of a line from one edge of a weir to the opposite edge and passing through the center of the circle formed by the weir.

WEIR LOADING - A guideline used to determine the length of weir needed on settling tanks and clarifiers in treatment plants. Used by operators to determine if weirs are hydraulically (flow) overloaded.

WET CHEMISTRY - Laboratory procedures used to analyze a sample of water using liquid chemical solutions (wet) instead of, or in addition to, laboratory instruments.
WHOLESALE WATER - Water purchased or sold for resale purposes.

WHOLESALE SYSTEM - A public water system that treats source water as necessary and then delivers finished water to another public water system. Delivery may be through a direct connection or through the distribution system of another consecutive system.

YIELD - The quantity of water (expressed as a rate of low - GPM, GPH, GPD, or total quantity per year) that can be collected for a given use from service or groundwater sources. The yield may vary with the use proposed, with the plan of development, and also with economic consideration. Also see SAFE YIELD.

ZETA POTENTIAL - In coagulation and flocculation procedures, the difference in the electrical charge between the dense layer of ions surrounding the particle and the charge of the bulk of the suspended fluid surrounding this particle. The zeta potential is usually measured in millivolts.

ZONE OF SATURATION - The soil or rock located below the top of the groundwater table. By definition, the zone of saturation is saturated with water. Also see WATER TABLE.
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Atomic Absorption</td>
</tr>
<tr>
<td>AC</td>
<td>Alternating Current</td>
</tr>
<tr>
<td>AOP</td>
<td>Advance Oxidation Process</td>
</tr>
<tr>
<td>ART</td>
<td>Average residence time</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
</tr>
<tr>
<td>AVB</td>
<td>Atmospheric Vacuum Breaker</td>
</tr>
<tr>
<td>AWWA</td>
<td>American Water Works Association</td>
</tr>
<tr>
<td>BAT</td>
<td>Best Available Technology</td>
</tr>
<tr>
<td>BMP</td>
<td>Best Management Practice</td>
</tr>
<tr>
<td>BPH</td>
<td>Bureau for Public Health of WVDHHR</td>
</tr>
<tr>
<td>C&E</td>
<td>Compliance & Enforcement Section of OEHS</td>
</tr>
<tr>
<td>C&T</td>
<td>Certification & Training Section of OEHS</td>
</tr>
<tr>
<td>CCL</td>
<td>Contaminant Candidate List</td>
</tr>
<tr>
<td>CCR</td>
<td>Consumer Confidence Report</td>
</tr>
<tr>
<td>CDC</td>
<td>Center for Disease Control</td>
</tr>
<tr>
<td>CDS</td>
<td>Combined Distribution System</td>
</tr>
<tr>
<td>CEH</td>
<td>Continuing Education Hour</td>
</tr>
<tr>
<td>CEU</td>
<td>Continuing Education Unit</td>
</tr>
<tr>
<td>CFE</td>
<td>Combined Filter Effluent</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>COC</td>
<td>Chain of Custody</td>
</tr>
<tr>
<td>CPE</td>
<td>Comprehensive Performance Evaluation</td>
</tr>
<tr>
<td>CT</td>
<td>Contact Time</td>
</tr>
<tr>
<td>CWS</td>
<td>Community Water System</td>
</tr>
<tr>
<td>DAF</td>
<td>Dissolved Air Flotation</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>DCVA</td>
<td>Double Check Valve Assembly</td>
</tr>
<tr>
<td>D/DBP</td>
<td>Disinfectants/Disinfection Byproducts</td>
</tr>
<tr>
<td>DBP</td>
<td>Disinfection Byproduct</td>
</tr>
<tr>
<td>DBPFP</td>
<td>Disinfection Byproduct Formation Potential</td>
</tr>
<tr>
<td>DBPR</td>
<td>Disinfection Byproduct Rule</td>
</tr>
<tr>
<td>DE</td>
<td>Diatomaceous Earth</td>
</tr>
<tr>
<td>DI</td>
<td>Deionized</td>
</tr>
<tr>
<td>DOC</td>
<td>Dissolved Organic Carbon</td>
</tr>
<tr>
<td>DPD</td>
<td>N,N-diethyl-p-phenylenediamine</td>
</tr>
<tr>
<td>DWSRF</td>
<td>Drinking Water State Revolving Fund</td>
</tr>
<tr>
<td>EBCT</td>
<td>Empty Bed Contact Time</td>
</tr>
<tr>
<td>EC</td>
<td>Enhanced Coagulation</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediamine Tetraacetic Acid</td>
</tr>
<tr>
<td>EED</td>
<td>Environmental Engineering Division of OEHS</td>
</tr>
<tr>
<td>EMF</td>
<td>Electromotive force</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>ERL</td>
<td>Emergency Response Lead</td>
</tr>
<tr>
<td>ERP</td>
<td>Emergency Response Plan</td>
</tr>
<tr>
<td>FOIA</td>
<td>Freedom of Information Act</td>
</tr>
<tr>
<td>GAC</td>
<td>Granulated Activated Carbon</td>
</tr>
</tbody>
</table>
GC Gas Chromatograph
GIS Geographic Information System
GCPD Gallons Per Capita Per Day
GWR GroundWater Rule
GWUDI Groundwater under the direct influence of surface water
HAA5 Haloacetic Acids, group of 5: mono-, di-, and trichloroacetic acids; and mono- and dibromoacetic acids
HAAFP Haloacetic Acid Formation Potential
HDPE High Density Polyethylene
HTH High Test Hypochlorite
HTML Hypertext Markup Language
I&CD Infrastructure & Capacity Development Section of OEHS
ICR Information Collection Rule
IDHL Immediately Dangerous to Health or Life
IDSE Initial Distribution System Evaluation
IESWTR Interim Enhanced Surface Water Treatment Rule
IFE Individual Filter Effluent
IOC Inorganics Chemicals
LEL Lower Explosive Limit
LEPC Local Emergency Planning Committee
LOTO Lock Out/Tag Out
LRAA Locational Running Annual Average
LSI Langlier Saturation Index
LT1ESWTR Long Term 1 Enhanced Surface Water Treatment Rule
LT2ESWTR Long Term 2 Enhanced Surface Water Treatment Rule
MCL Maximum Contaminant Level
MCLG Maximum Contaminant Level Goal
M-DBP Microbial-Disinfectants/Disinfection Byproducts
MRDL Maximum Residual Disinfection Level
MRDLG Maximum Residual Disinfectant Level Goal
MF Microfiltration
MOR Monthly Operational Reports
MRDL Maximum Residual Disinfectant Level
MRDLG Maximum Residual Disinfectant Level Goal
MRL Minimum Reporting Level
MRT Maximum Residence Time
MSDS Material Safety Data Sheets
MWC Molecular Weight Cutoff
NFPA National Fire Protection Association
NCI National Cancer Institute
NF Nanofiltration
NFPA National Fire Protection Association
NIOSH National Institute for Occupational Safety & Health
NOM Natural Organic Matter
NPDWR National Primary Drinking Water Regulation
NPSH Net Positive Suction Head
NSDWR National Secondary Drinking Water Regulation
NSF National Sanitation Foundation
NTNCWS Non-transient, Non-community Water System
NTU | Nephelometric Turbidity Unit
O&M | Operation and Maintenance
OC | Organic Chemicals
OEHS | Office of Environmental Health Services
OIT | Operators-in-Training
OSHA | Occupational Safety & Health Association
PAC | Powdered Activated Carbon
PACl | Polyaluminum Chloride
PC | Personal Computer
PDF | Portable Document Format
PE | Performance Evaluation
PLC | Programmable Logic Controller
PN | Public Notification
PODR | Point of Diminishing Return
PPE | Personal Protective Equipment
PR | Public Relations
PSC | West Virginia Public Service Commission
PVB | Pressure Vacuum Breaker
PVC | Polyvinyl Chloride
PWS | Public Water System
PWSID| Public Water System Identification
RAA | Running Annual Average
RAM | Random Access Memory
RO | Reverse Osmosis
RPZ | Reduced Pressure Zone Assembly
RTU | Remote Terminal Units
SCBA | Self-Contained Breathing Apparatus
SCADA| Supervisory Control and Data Acquisition
SDS | Simulated Distribution System
SDWA | Safe Drinking Water Act
SDWIS| Safe Drinking Water Information System
SEER | Surveillance, Epidemiology, and End Results
SMCL | Secondary Maximum Contaminant Level
SOC | Synthetic Organic Chemical
SPADNS| Sodium 2-(parasulfophenylazo)-1,8-dihydroxy-3,6-naphthalene disulfonate
SSS | System-Specific Study
SUVA | Specific Ultraviolet Absorption
SWAP | Source Water Assessment and Protection
SWTR | Surface Water Treatment Rule
TC | To Contain
TCR | Total Coliform Rule
TD | To Deliver
TDS | Total Dissolved Solids
TDT | Theoretical Detention Time
THM | Trihalomethane
TTHFP| Total Trihalomethane Formation Potential
TNCWS| Transient Non-community Water System
TOC | Total Organic Carbon
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOX</td>
<td>Total Organic Halides</td>
</tr>
<tr>
<td>TOXFP</td>
<td>Total Organic Halides Formation Potential</td>
</tr>
<tr>
<td>TT</td>
<td>Treatment Techniques</td>
</tr>
<tr>
<td>TTHM</td>
<td>Total Trihalomethanes</td>
</tr>
<tr>
<td>UEL</td>
<td>Upper Explosive Limit</td>
</tr>
<tr>
<td>UF</td>
<td>Ultrafiltration</td>
</tr>
<tr>
<td>USB</td>
<td>Universal Serial Bus</td>
</tr>
<tr>
<td>USGS</td>
<td>United States Geological Survey</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>UV-254</td>
<td>Ultraviolet absorbance at a wavelength of 254 nm</td>
</tr>
<tr>
<td>VOC</td>
<td>Volatile Organic Chemical</td>
</tr>
<tr>
<td>VSS</td>
<td>Very Small System</td>
</tr>
<tr>
<td>WD</td>
<td>Water Distribution</td>
</tr>
<tr>
<td>WHPA</td>
<td>Wellhead Protection Area</td>
</tr>
<tr>
<td>WVDEP</td>
<td>West Virginia Department of Environmental Protection</td>
</tr>
<tr>
<td>WVDHHR</td>
<td>West Virginia Division of Health and Human Resources</td>
</tr>
</tbody>
</table>
CONTACTS
Office of Environmental Health Services
Capitol and Washington Streets
1 Davis Square, Suite 200
Charleston, West Virginia 25301-1798
http://www.wvdhhr.org/oehs/eed

Certification and Training Program
Dawn A. Newell, MS Program Manager
dawnnewell@wvdhhr.org
Phone: 304-558-6993 Fax: 304-558-4322

Mary Lowe Office Assistant III
marylowe@wvdhhr.org
Phone: 304-558-6988 Fax: 304-558-4322

Philip Martino Environmental Resource Specialist III
pmartino@wvdhhr.org
Phone: 304-558-6986 Fax: 304-558-4322

Elizabeth Gallaher Environmental Resource Specialist II
elizabethgallaher@wvdhhr.org
Phone: 304-558-6987 Fax: 304-558-4322

Cheryl Sizemore Office Assistant II
cherylsizemore@wvdhhr.org
Phone: 304-558-6991 Fax: 304-558-4322

Compliance and Enforcement
Don Wang Assistant Manager
donwang@wvdhhr.org
Phone: 304-558-6733 Fax: 304-558-5051

Data Management
Vacant Program Manager
N/A
Phone: 304-558-6708 Fax: 304-558-0139

Stacey Roe Engineering Technician
staceyroe@wvdhhr.org
Phone: 304-558-6750 Fax: 304-558-0139

District Office Coordination
Robert Hart, PE Unit Manager
bobhart@wvdhhr.org
Phone: 304-558-6754 Fax: 304-558-5051

Beckley District Office Phone: 304-256-6666
Kearneysville District Office Phone: 304-725-9453
Philippi District Office Phone: 304-457-2296
St. Albans District Office Phone: 304-722-0611
Wheeling District Office Phone: 304-238-1145

Infrastructure & Capacity Development Program
Robert DeCrease, PE Unit Manager
robertdecrease@wvdhhr.org
Phone: 304-558-6745 Fax: 304-558-0691

William S. Herold, Jr., PE Assistant Unit Manager
wherold@wvdhhr.org
Phone: 304-558-6760 Fax: 304-558-0691

Richard Watson, MSE Program Manager
richardwatson@wvdhhr.org
Phone: 304-558-6747 Fax: 304-558-0691

Source Water Assessment and Wellhead Protection Program
William Toomey, MS, PG Unit Manager
wtoomey@wvdhhr.org
Phone: 304-558-6746 Fax: 304-558-0324

J. Scott Rodeheaver, MS Assistant Unit Manager
scottrodeheaver@wvdhhr.org
Phone: 304-558-6713 Fax: 304-558-0324

Water Quality Laboratory Certification
Thomas L. Ong Chief of Microbiology
tomong@wvdhhr.org
Phone: 304-558-3530 x 2710
Office of Laboratory Services
167 - 11th Avenue
South Charleston, WV 25303
http://www.wvdhhr.org/labservices/index.cfm
WV Bureau for Public Health
Office of Environmental Health Services
Environmental Engineering Division

March 2007

Wheeling District
117 Methodist Building
1060 Chapline St.
Wheeling, WV 26003
304-238-1145/1001
FAX: 304-238-1002

St. Albans District
808 B. St., Suite G
St. Albans, WV 25177
304-722-0611
FAX: 722-0615

Kearneysville District
1948 Wiltshire Rd. Suite 6
Kearneysville, WV 25430
304-725-0348/9453/1051
FAX: 304-725-3108

Beckley District
100 East Prince St.
Beckley, WV 25801
304-256-6666
FAX: 304-256-6672

Philippi District
209 South Main Street
Philippi, WV 26416
304-457-2296
FAX: 304-457-5571
FORMS

Certification & Training
Operator Forms
• Form EW-102C (Application for Certification and Examination of WD & Class I-IV)
• Form EW-102D (Application for Renewal of WD & Class I-IV)
• Form EW-102E (Application for Certification as an OIT)
• Form EW-102F (Application for 1D Certification, Examination, and Renewal)
• Form EW-74 (Resignation)
• Form EW-75 (Application for Certification as a Backflow Prevention Assembly Inspector/Tester)
• Form EW-108 (Application for Certification Through Reciprocity)

System Forms
• Form EW-104 (Annual Personnel Status Change)
• Form EW-111 (Employment Status Change)
• Form EW-107 (Certified Operator Requirement Waiver Application)

Data Management
Monthly Operational Reports
• EW-103 Groundwater Systems Form
• EW-210 Purchase Systems Form
• EW-90 Surface Water Series Form
• EW-80 Fluoride Form

Monitoring Guidance Form
• EW-141-A Monitoring Guidance for Public Water Systems Form (for lead and copper)

Regulation Public Notice Forms
• TIER 1 - 24 HOUR NOTIFICATION Form
• TIER 2/3 - PUBLIC NOTICE CERTIFICATION & "IMPORTANT INFORMATION"

Public Notice Forms
• BOIL WATER NOTICE Form
• HEALTH DEPARTMENT BOIL WATER NOTICE Form
• HEALTH DEPARTMENT PUBLIC SERVICE ANNOUNCEMENT Form